Lecture 03

The Perceptron

And introduction to single-layer neural networks

STAT 453: Deep Learning, Spring 2020
Sebastian Raschka
http://stat.wisc.edu/ " sraschka/teaching /stat453-ss2020/

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/

Announcements

Project groups (by next Tue), 3 members per group -- TA will set up

a document where you can add your team member preferences
Project topics (brainstorm with group members)
HW1 (related to the Perceptron; more about that later)

Piazza for questions, encouraged to help each other
(but don't share your HW solutions)

From the News

= m I EEE BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY TRANSPORTATION SIGN IN SUBSCRIBE Q
GREGORY BARBER SCIENCE B1.22.2828 11:88 AM

The Most Complete Brain Map Ever Is Here: AFly's
'‘Connectome’

It took 12 years and at least $40 million to chart a region about 250 micrometers across—about the thickness of two strands of hair.

https://www.wired.com /story/most-complete-brain-map-ever-is-here-a-flys-connectome /

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 3

https://www.wired.com/story/most-complete-brain-map-ever-is-here-a-flys-connectome/

After this lecture, you will be able to
implement your first neuron model for
making predictions!*®

*Sorry, we are not going to implement a fruit fly brain, but if you are interested in a worm brain:
"MNIST classification using the neuronal network of Caenorhabditis elegans"

https: //github.com /vinayprabhu /Network Science Meets _Deep_ Learning/blob/master/
1_MNIST C_Elegans.ipynb

https://github.com/vinayprabhu/Network_Science_Meets_Deep_Learning/blob/master/1_MNIST_C_Elegans.ipynb
https://github.com/vinayprabhu/Network_Science_Meets_Deep_Learning/blob/master/1_MNIST_C_Elegans.ipynb

Overview

1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem

4/5 -- Geometric intuition

5/5 - HW1

Do our brains use deep learning?

1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem

4/5 -- Geometric intuition
5/5 - HW1

Inspired by Biological Brains and Neurons

r . - :' { h . J*‘

https://publicdomainpictures.net/en/view-image.php?image=130359& picture=human-brain https://commons.wikimedia.org/wiki/Neuron# /media/File:Mouse cingulate cortex neurons.jpg https://commons.wikimedia.org/wiki/Neuron# /media/File:Pyramidal _hippocampal neuron 40x.jpg

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

A

Source: https://media.mnn.com/assets/images/2016/10/plane-birds.jpg.1000x0 q80 crop-smart.jpg

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

Number of neurons in brains ...

Neurons in the

Source: https://en.wikipedia.org/wiki/

List of animals by number of neurons

On a sidenote:

Name s brain/'whole ¢ Synapses # Details Image Source
nervous system
Sponge 0 [3]
Trichoplax 0 4
Ciona 8617 (central 15
intestinalis 231 nervous 6]
larva (sea squirt) system only)
Asplanchna
brightwellii about 200 Brain only m
(rotifer)
Caenorhabditis
elegans 302 ~7,500 (8]
(roundworm)
Jellyfish 5,600 Hydra vulgaris (H. attenuate) (9]
Fin whale | 15,000,000,000 Balaenoptera physalus | 52 155]
Homo sapiens: (For average adult)
"The human cerebral cortex, with an average 1233 g and 16
billion neurons, is slightly below expectations for a primate
Human | 16,000,000,000 _ S " 5 gl | varzise)
brain of 1.5 kg, while the human cerebellum, at 154 g and 69
billion neurons, matches or even slightly exceeds the
expected"
Lona-finned Globicephala melas: "For the first time, we show that a species
Ilgt B 37,200,000,000 of dolphin has more neocortical neurons than any mammal [57]
5 studied to date including humans."

Name Short Long
scale scale
(US, (Western,
Eastern Central
Europe, Europe,
English older
Canadian, British,
Australian, and
and French
modern | Canadian)
British)
Million 106 106
Milliard 109
Billion 10° 1012
Billiard 1015
Trillion 1012 10'8

Sebastian Raschka

STAT 453: Intro to Deep Learning and Generative Models

SS 2020

A Biological Neuron

Oem hvrder
(_Demdr”eﬁ OQ ?os‘-r—
T Synephie
\-—\ f\/\,—\/ljaam«/)
1

j\ Axon

P A e

NM[/[C(AS

L/—/\F\J

NEuRon

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

10

Biological Neurons

Pyramidal neuron cells in mouse cortex

Glutamaterge Synapse Glial cell

\ \
Presynaptic \ \ \ \ ’ - 2 >> — b
terminal :“ (\l\” 5

Glutamine ’ Glutamate

‘"‘f‘ (l.u-uu
blul.\m.m-
Glw ..,\...’ «
...', Glutama /
NS Y L
y L_,\ —

Synaptic connection is chemical

Aktions
potential

elektrotonische

‘ Weiterleitung

EPSP 1

elextro- /

tonische /
Weiter /
ieitung

!\ EPSP 2

electrical postsynaptic potential
accumulates: when it reaches a threshold
=> action potential signal

11

McCulloch & Pitts Neuron Model

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. McCuLLocH and WALTER H. Pirts 1943

%
@ weighted }—» — binary signal
sum

12

Logical AND Gate

L1

L2

Out

13

Logical OR Gate

L1

L2

Out

14

Logical NOT Gate

wl_l@
> —> —>

15

Logical XOR Gate

L1

L2

Out

(Take-home exercise)

16

Training Single-Layer Neural Networks

1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem

4/5 -- Geometric intuition
5/5 - HW1

17

Rosenblatt's Perceptron

A learning rule for the computational /mathematical neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing
automaton. Project Para. Cornell Aeronautical Laboratory.

Source: http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/Members/wilex4 /Rosen-2.jpg

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

18

Perceptron Variants

Note that Rosenblatt (and later others) proposed many

variants of the Perceptron model and learning rule.
We discuss a "basic" version:

let's say,

"Perceptron" = "a classic Rosenblatt Perceptron"

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 19

A Computational Model of a Biological Neuron

0, 2<46
Threshold f(2) =
Veworrler 1 < > 0
Y
Dendles o0 o - wl
S Sgmaphic
?\ Aseon S T ~— @
YL /CF\W ,:\ 2 ’UJQ >
> \@;Q Output
QJC;N A Net input
N Eueon

fo (szwz) =
1=1

Inputs

20

Terminology

General (logistic regression, multilayer nets, ...):

e Net input = weighted inputs, z
e Activations = activation function(net input); a = 6(2)
e Label output = threshold(activations of last layer); y = f(a)

Special cases:

e In perceptron: activation function = threshold function
e In linear regression: activation = net input = output

0, 2<6
Threshold f(z) = { °=

1, z>460
w3 ’
oS OIS
O

utput
Net input

m
Jo <Z LWy =9
Inputs 1=1

21

Perceptron Output

. 0, z2<46
77 1, z> 460

More convenient to re-arrange:

. 0, 2—-0<0
s 1, z—6 >0

negative threshold —_—

\:6’ = "bias"

22

General Notation for Single-Layer Neural Networks

e Common notation (in most modern texts): define the bias unit separately
e However, often inconvenient for mathematical notation

o "'separate" bias unit
Activation

O 1=1

utput
0 <0
o) =4 "7
1, 2z>0

Net input

b= —0

23

General Notation for Single-Layer Neural Networks

e Often more convenient notation: define bias unit as w, and

prepend a 1 to each input vector as an additional "feature" value
e Modifying input vectors is more inconvenient/inefficient coding-wise, though

bias unit "included" as wy

\O‘A Za:zwz> — 0 (XTW) =
&
Activation

N () 0, 2 <0
o(z) =
O- Yy I, 2>0
Output

Net input
P Wy — —0

24

General Notation for Single-Layer Neural Networks

Net input

Activation

[

A

Y
utput

Vector dot product

o (i xzwz> =o|(x'w) =49

() <(O,z—9§()
o(z) =
\1,2—9>O
UJ():—@

25

Interlude: "Vectorization" in Python

Question for you: What are we computing here?

In [1]:

x0, x1, x2 =1., .
bias, wl, w2 = 0.1, 0.3, 0.5

x = [x0, x1, x2]
w = [bias, wl, w2]
A simple for-loop:
In [2]:
z = 0.

for i in range(len(x)):
z += xX[1] * w[i1]

print(z)

2.2

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 26

Interlude: "Vectorization" in Python

A simple for-loop:

In [2]:
z = 0.
for i in range(len(x)):

z += x[1] * w[1]

print(z)

2.2

A little bit better, list comprehensions:

In [3]:

z = sum(x_1i*w i for x i, w 1 in zip(x, w))
print(z)

2.2

27

In [3]:

z = sum(
print(z)

2.2

In [4]:

Interlude: "Vectorization" in Python

list comprehensions (still sequential):

X i*w 1 for x i, w i in zip(x, w))

A vectorized implementation using NumPy:

import numpy as np

X vec, w_vec = np.array(x), np.array(w)

Zz = (X vec.transpose()).dot(w_vec)
print(z)

z = X vec.dot(w_vec)

print(z)

2.2

2.2

28

Interlude: "Vectorization" in Python

a) def forloop(x, w):
z = 0.
for i in range(len(x)):
z += X[1] * w[1]

return z

l)) def listcomprehension(x, w):

return sum(x i*w 1 for x i, w 1 in zip(x, Ww))

C) def vectorized(x, w):

return x vec.dot(w_vec)

X, w = np.random.rand(100000), np.random.rand(100000)

Questions for you:
Which one is the fastest?
How much faster is the fastest one compared to the slowest one?

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 29

Interlude: "Vectorization" in Python

In [6]: sgtimeit -r 100 -n 10 forloop(x, w)

38.9 ms * 1.32 ms per loop (mean * std. dev. of 100 r

uns, 10 loops each)

In [7]: g¢timeit -r 100 -n 10 listcomprehension(x, w)

29.7 ms * 842 us per loop (mean * std. dev. of 100 ru

ns, 10 loops each)

In [8]: gtimeit -r 100 -n 10 vectorized(x vec, w vec)

46.8 us * 8.07 us per loop (mean * std. dev. of 100 r

uns, 10 loops each)

30

Interlude: Connections and Parallel Computation

Image Source: https://timedotcom.files.wordpress.com/
Image Source: https://fossbytes.com/wp-content/uploads/ 2014/05/brain.jpg?w=1100&quality=85
2017/05/nvidia-volta-v100-gpu.jpg

NVIDIA Volta with approx. 2.1 x 1010 transistors Brain with 1.6 x 1010 neurons

approx. only 10 connections per transistor 104 -10% connections per neuron

approx. 1015 connections in total

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 31

TOM SIMONITE BUSINESS 01.31.19 05:58 PM

THE WORLD'S FANTEST
SUPERCOMPUTER BREARS AN Al
RECORD it e v comsony s et

> 27,000 GPUs

“Deep learning has never been scaled
to such levels of performance before,”
says Prabhat (research group leader at
Berkeley National Lab)

Application: Weather patterns (three-
hour forecasts)

Ridge National L 1t superc) ut ecame the worl ost powerf
ym China for the first t

FO] CARLDS JONES/ODAK RIDGE NATIONAL LAB

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

"billion billion" operations per second (exaflop)

32

https://www.wired.com/story/worlds-fastest-supercomputer-breaks-ai-record/
https://www.wired.com/story/worlds-fastest-supercomputer-breaks-ai-record/

= IEEE BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY TRANSPORTATION SIGN IN SUBSCRIBE Q

BUSINESS B1.21.2828 B7:88 AM

Al Can Do Great Things—if It Doesn't Burn the Planet

The computing power required for Al landmarks, such as recognizing images and defeating humans at Go, increased 300,000-fold
from 2012 to 2018.

https://www.wired.com /story/ai-great-things-burn-planet/

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 33

https://www.wired.com/story/ai-great-things-burn-planet/

Perceptron Learning Rule

Assume binary classification task, Perceptron finds decision boundary if
classes are separable

’ :.:...l- :I.
" Bl
2 .:"F al
@ ¢ o WET 0 s
1 © o .° e ® ¥ .)
> ¢ O
. ,o ~.o " o
-2‘ o, *0(®
b ' ® .
® i
-4 - ® e @
¢ [animated GIF]
-4 -2 0 2 4
|beration O L9

Code at https://github.com /rasbt/stat453-deep-learning-ss20/blob/master/L03-
perceptron/code/perceptron-animation.ipynb if you want to play with it.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 34

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-animation.ipynb

The Perceptron Learning Algorithm

o |f correct: Do nothing if the prediction if output is equal to the target

e If incorrect, scenario a):
If output is O and target is 1, add input vector to weight vector

e If incorrect, scenario b):

If output is 1 and target is 0, subtract input vector from weight vector

Guaranteed to converge if a solution exists

(more about that later...)

35

The Perceptron Learning Algorithm

Let
D = ((xll, g1, (x, y), ., (<, 7)) € (®™ x {0,1})"

1. Initialize w := 0" (assume notation where weight incl. bias)
2. For every training epoch:
A. For every <X[i],y[i]> cD:
(a) gjm = J(XMTW)
(b) err:= (y" —)

(c) W =W + err X x|

36

Perceptron Coding Example

https://github.com /rasbt/stat453-deep-learning-ss20/blob/master/L03-

perceptron/code/perceptron-numpy.ipynb

https://github.com /rasbt/stat453-deep-learning-ss20/blob/master/L03-

perceptron /code/perceptron-pytorch.ipynb

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 37

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L03_perceptron/code/perceptron-numpy.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-numpy.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-numpy.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-pytorch.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-pytorch.ipynb

Optional: Perceptron Convergence Theorem

1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem

4/5 -- Geometric intuition
5/5 - HW1

38

Perceptron Convergence Theorem

Let
D = ((xl,yM), (<,), .., (x, gl € (R™ x {0,1})"

vyl e Dy gyl =1

. | and D1 UDy; =D
vyl € Dy 1yl = 0

Assume the input vectors come from two linearly separable
classes such that a feasible weight vector w * exists.

The perceptron learning algorithm is guaranteed to converge
to a weight vector in the feasible region in a finite number of
iterations such that

vx! ¢ D : w ' xd >0

vx! ¢ Do : w ' x <0

39

Perceptron Convergence Theorem -- Proof

Let us slightly rewrite the update ru
convenience when we construct the

e (upon misclassification) for

yroof:

wlitl = wlil ¢ xlif (wlih Tl <0 %l e Dy

i4-1]

\

= wll — x4 if (wlh)Txll > 0 %l e D,

Here [i + 1] refers to the weight vector of the next training

example (that is, the weight after updating)

40

Perceptron Convergence Theorem -- Proof

From the previous slide:

wlitl = wll] if (wli)Txll < o xll € D,
We can rewrite this as follows:

wlitll — w0l 1 o]

p

Also, we can drop this term if we
initialize the weight vector as ()"

i+1] 1]

L

wlitl] _ |

41

Perceptron Convergence Theorem -- Proof

From the previous slide, the update rule:

i4-1] 1]

L

wl — <!

Let's multiply both sides by w™:

(w*)Twlt = (w)Txl + 4 (w*)Txl

All these terms are > 0, because remember that we have
so the updates are all to make the net inputs more positive

Now let @ = min (w*)Txm, g=1,..,1
1]

then (W*)Twlitl > o

Perceptron Convergence Theorem -- Proof

From the previous slide, we had the inequality:

——
Using the Cauchy-Schwarz inequality, we can then say

2wl > () Twl)3

|w”

as well as

w7 [[w T2 > (ad)3

So, we can finally define the lower bound of the size of the weights

9 +9
7;+1]H2 > Ha :/HQ
W

W

43

Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights,

let us get the upper bound.

For that, let's go back to the update rule

wlitll = wlil 4 xl i (wlihTxld <o %l e D,

and apply the squared L2 norm on both sides
Hw[z'—|—1]H2 _ WZ 4 X[z]HQ

— W:i:H2 _|_2(X[’i])TW[i] 4 HX[i]Hz

Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights,

let us get the upper bound.

For that, let's go back to the update rule

wlitl = wlil ¢ xlif (wlihTxl <o xl e Dy

and apply the squared L2 norm on both sides

Leads to

w2 < flw 2 o+ (]2

45

Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights,

let us get the upper bound.

For that, let's go back to the update rule

v implies
and apply the squared L2 norm on both sides

(w2 = | |w 4 x!9))2
= ||w![|? + 2(x")Twl 4 [|x1]|?
——
< 0
Thus

Perceptron Convergence Theorem -- Proof

Now, we simply expand:

w12 < w2]
v

w2 < w1 o el [l
v

w2 < w2 o a2 [l 2 [l

w2 < w24y X2
j=1

[wh 2 <y =2
j=1

47

Perceptron Convergence Theorem -- Proof

1
From HW[H_”H2 < Z HXMH2 we can finally get the

g=1
upper bound.

Let 3 = max |[x7)||?

then HW[HHH2 < B

43

Perceptron Convergence Theorem -- Proof

lower bound upper bound
2.2
i+1])2 > ! 11012 —
|w = [w*]|2 HW[Z]H < 1
combined
9 .9 Since the number of iterations / has an upper
: a1
5' ~ Hw[z—l—l]HZ > bound,
= — ‘ |W* ‘ |2 we can conclude that the weights only change a
finite number of times and will converge if the
;< 5‘ ’W* | ’2 classes are linearly separable.
— 2
87

49

Perceptron Convergence Theorem -- Proof
52- > HW[Z_H]H2 > ()42i2

w121 2

50

Perceptron Convergence Theorem -- Proof

*
In the convergence theorem, we can assume that HW H =1

(so you may remove it from all equations)

a2 .
3B; > HW[Z+1]H2 > PN B, > wlitll]]2 > 42,2
[|w|[? CT -
* |2
i < 6HW2H o e %
84 8

51

1/5 —

2/5

3/5 -

Geometric Intuition Behind the Perceptron

Brains and neuron models
-- The perceptron learning rule
Optional: The perceptron convergence theorem

4 /5 -- Geometric intuition

5/5 —

HW1

52

Geometric Intuition

Decision boundary Weight vector is perpendicular to

the boundary. Why?

53

Geometric Intuition

Decision boundary Weight vector is perpendicular to

the boundary. Why?

0 Remember,
¢
i 0, w/ix <0
y p—
\1, wix >0

w'x = ||w|| - |]x]] - cos(6)

——

So this needs to be 0 at the boundary, and
it is zero at 90°

54

Geometric Intuition

_ Every input vector on this side
What else does this mean? / will have an angle with the weight vector

that is < 90°

Decision boundary

Assume origin (0, 0)
and no bias

So, we could scale the weights and/or inputs by an arbitrary factor and
still get the same classification results
(but large inputs will take much longer to converge if you check the bounds we

defined previously ...)

55

Geometric Intuition

input vector for an example with label 1

weight vector must be somewhere such that the angle
CORRECT SIDE

is < 90 degrees to make a correct prediction

WRONG SIDE
The dot product will then be positive, i.e., > 0, since

wix = ||w]| - [[x|| - cos(6)

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 56

Geometric Intuition

input vector for an example with label 0

WRONG SIDE [

RRECT SIDE -
CORRECT S \ weight vector must be somewhere such that the angle

is > 90 degrees to make a correct prediction

The dot product will then < 0, since

w'x = [[wl] - [[x]] - cos(6)

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 57

Geometric Intuition

input vector for an example with label 1

This is the new weight vector
CORRECT SIDE

WRONG SIDE

For this weight vector, we make a wrong prediction:;
hence, we update

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 58

Perceptron Conclusions

The (classic) Perceptron has many problems
(as discussed in the previous lecture)

Linear classifier, no non-linear boundaries possible
Binary classifier, cannot solve XOR problems, for example
Does not converge if classes are not linearly separable

Many "optimal" solutions in terms of 0/1 loss on the training
data, most will not be optimal in terms of generalization
performance

59

https //aph. fs quoracdn net/mam q|mg—305eb8136c4a20f348bb7ab465bc2e10 http://theconversation.com /want-to-beat-climate-change-protect-our-natural-forests-121491

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 60

Perceptron Fun Fact

[...]| Where a perceptron had been trained to distinguish between - this was for
military purposes - it was looking at a scene of a forest in which there were
camouflaged tanks in one picture and no camouflaged tanks in the other. And the
perceptron - after a little training - made a 100% correct distinction between
these two different sets of photographs. Then they were embarrassed a few hours
later to discover that the two rolls of film had been developed differently. And so
these pictures were just a little darker than all of these pictures and the
perceptron was just measuring the total amount of light in the scene. But it was
very clever of the perceptron to find some way of making the distinction.

-- Marvin Minsky, Famous Al researcher, Author of the famous "Perceptrons™ book

Source: https://www.webofstories.com /play/marvin.minsky /122

61

An Analogy to Future Lectures ...

We can say the perceptron optimizes a loss function analogous to the
squared error in least-squares regression, except that we have targets

and outputs:

_ Loali]l]2 . T -0, wix+b<0
E(W,b)—z (Y y) where ¢ =o(w X+b){1, wlx 4 b > 0

1

62

An Analogy to Future Lectures ...

We can say the perceptron optimizes a loss function analogous to the
squared error in least-squares regression, except that we have targets

and outputs:

Lo i 0, wI'x +b<0
E: 7] o l)2 ~ T), wix+0os
L(w,b) = 2(3/ y) where ¢ =o(w X+b){1, wTx 4+ b > 0

63

An Analogy to Future Lectures ...

We can say the perceptron optimizes a loss function analogous to the

squared error in least-squares regression, except that we have targets

and outputs:

L i i

L(w,b) = Z 5(?/[] - y[])2 where
oL 0
OF _ 9 N plil _liy2
T, ow; E;(y y)

_ 9 To iy _ o lil)2

= u, ;(U(W x") —y™)

= N 2(o(wTx[) —) L (r(w Ty — ol

> 2(o())awj(())

— Z Q(O(WTXM) — y[i])a’(wTX[i])ai%wTX[i]

= Z 2(o(wlxll) -yl U’(WTX[i])CE[?]

J

not differentiable!

0, wix+b<0

. T
= o(wW' x+0b) =
Y () {1, wlix+b>0

64

An Analogy to Future Lectures ...

We can say the perceptron optimizes a loss function analogous to the
squared error in least-squares regression, except that we have targets

and outputs:

Lo i

L(w,b) = Z 5(?/[I — y[])2 where
oL s,
= = alil o li]y2
ij ﬁwj Z;(y 4)

_ i Ty, l)\2

= gy 2D =)

=3 2(o(wTxl) - =9 (o (w Tl — 4l

i w;
— Z Q(U(WTX[%']) _ y[i])U/(WTX[i])iWTX[i]
8wj

= Z 2(o(wlxlily — yli Ul(WTX[i])CU[?]

J

not differentiable!

0. wix+b<0
N T 9 =~
=o(w X+ b) =

Y () {1, wlix+b>0

However, perceptron does
something very similar

to stochastic gradient
descent:

'
o

821]]'

(not a real derivative)

— () — i)z,
oL

J J
3wj

65

On Deep Learning vs How the Brain Works

MARTIN FORD: You gave an interview toward the end of 2017 where you said that you
were suspicious of the backpropagation algorithm and that it needed to be thrown gy
and we needed to start from scratch.1 That created a lot of disturbance, so I wanted to

ask what you meant by that?

GEOFFREY HINTON: The problem was that the context of the conversation wasn't
properly reported. I was talking about trying to understand the brain, and I was
raising the issue that backpropagation may not be the right way to understand the
brain. We don’t know for sure, but there are some reasons now for believing that the
brain might not use backpropagation. I said that if the brain doesn’t use backpropag®
tion, then whatever the brain is using would be an interesting candidate for artificial
systems. I didn’t at all mean that we should throw out backpropagation. Backprop¥

gation is the mainstay of all the deep learning that works, and I don’t think we should
get rid of it.

1947
I See: https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f61 9gﬂ>d-9db0'49 “
a9b2-7a4c310a28fe.html
R

(Excerpt from "Architects of Intelligence")

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

1/5 -- Brains and neuron models

2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem

4/5 -- Geometric intuition
5/5 -- HW1

Your First Homework!

i/
,h‘
L1414

https://finmaxbo.com /uploads/posts/2019-07/1562831275 excitement.jpg

67

Homework Assignment 1

Your task:

Based on the NumPy example,

implement Perceptron code into pure Python to become more familiar of
how PyTorch/NumPy (and the Perceptron) works

(=> no NumPy, no PyTorch, etc.)

1) Download code from:

https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/hw01

2) Submit solution via Canvas for grading (submission deadline will be announced)

68

https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/hw01

