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Question: Why does the model change

the background as well?
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Generative Adversarial Networks (GAN)

The original purpose is to generate new data

Classically for generating new images, but applicable to wide
range of domains

Learns the training set distribution and can generate new
images that have never been seen before

In contrast to e.g., autoregressive models or RNNs

(generating one word at a time), GANs generate the whole
output all at once



Discriminator —>©

p(y = "real image”|x)
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Adversarial Game

Discriminator: learns to become
better as distinguishing real from

generated images
Real Image

S——._. 0

Generator New Image

Generator: learns to generate
better images to fool the

discriminator
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Sidenote: Transposed Convolutions (Last Lecture)

Lipton, Z. C., & Steinhardt, J. (2018). Troubling Trends in Machine Learning Scholarship.
arXiv preprint arXiv:1807.03341.

3.4.2 Overloading Technical Terminology

A second avenue of misuse consists of taking a term that holds precise technical meaning and
using it in an imprecise or contradictory way. Consider the case of deconvolution, which formally
describes the process of reversing a convolution, but is now used in the deep learning literature to
refer to transpose convolutions (also called up-convolutions) as commonly found in auto-encoders
and generative adversarial networks. This term first took root in deep learning in [79], which does
address deconvolution, but was later over-generalized to refer to any neural architectures using
upconvolutions |78, 50]. Such overloading of terminology can create lasting confusion. New machine
learning papers referring to deconvolution might be (i) invoking its original meaning, (ii) describing
upconvolution, or (iii) attempting to resolve the confusion, as in [28], which awkwardly refers to
“upconvolution (deconvolution)”.


https://arxiv.org/abs/1807.03341

If you wonder how the term "generative" fits in the
context of your other statistics classes ...

Lipton, Z. C., & Steinhardt, J. (2018). Troubling Trends in Machine Learning Scholarship.
arXiv preprint arXiv:1807.03341.

As another example, generative models are traditionally models of either the input distribution
p(x) or the joint distribution p(x,y). In contrast, discriminative models address the conditional
distribution p(y | x) of the label given the inputs. However, in recent works, “generative model”
imprecisely refers to any model that produces realistic-looking structured data. On the surface, this
may seem consistent with the p(x) definition, but it obscures several shortcomings—for instance,
the inability of GANs or VAEs to perform conditional inference (e.g. sampling from p(x2 | 1) where
x1 and xo are two distinct input features). Bending the term further, some discriminative models
are now referred to as generative models on account of producing structured outputs [76], a mistake
that we (ZL) make in [17]. Seeking to resolve the confusion and provide historical context, [58]
distinguishes between prescribed and implicit generative models.

™ . I 1 1 . r 1 1 i 1 1 . 1 1 1 . el


https://arxiv.org/abs/1807.03341

Why Are GANs Are Called Generative Models?

The generative part comes from the fact that the model "generates"
new data

Usually, generative models use an approximation to compute the
usually intractable distribution; here, the discriminator part does that
approximation

So, it does learn p(x)

Vanilla GANs cannot do conditional inference, though
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When Does a GAN Converge?

Real Image

Discriminator —>O

Generator New Image
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GAN Objective

mén max L(D,G) =Egppon@log D(x)] + E.p, () [log(1l — D(G(2))))
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m(%n max L(D,G) = Egrpon@)log D(x)] + E.vp, (z)log(1 — D(G(2))))

Discriminator gradient for update (gradient ascent):

predict well on real images predict well on fake images
=> probability close to 1 => probability close to 0
[ A | | l |
1 n
Vw, - Z [logD (iB(Z)) + log (1 — D (G (z(z))))}
1=1

Generator New Image
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min max L(D,G) = Egp,.. (@)l0og D(x)| + E, ., (2)log(1 — D(G(2)))]

G D

Generator gradient for update (gradient descent):

predict badly on fake images

=> probability close to 1
A

1

T 3o (10 (6 ()

Generator New Image
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., z("™} from noise prior p,(2).
e Sample minibatch of m examples {z(") ..., 2™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo~ 3" [log D (a) +1g (1- D (G (29)))].

1=1

end for
e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Do, Yotes (1= 0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

® Goodfellow, lan, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural

Information Processing Systems, pp. 2672-2680. 2014.
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http://papers.nips.cc/paper/5423-generative-adversarial-nets

GAN Convergence

e Converges when Nash-equilibrium (Game Theory concept) is reached
in the minmax (zero-sum) game

minmax L(D, G) = Egnp,,, (@) 10§ D(x)] + Eznp, () log(1 — D(G(2)))]

e Nash-Equilibrium in Game Theory is reached when the actions of one
player won't change depending on the opponent's actions

e Here, this means that the GAN produces realistic images and the
discriminator outputs random predictions (probabilities close to 0.5)
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping * = G(z) imposes the non-uniform distribution p, on
transformed samples. G contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: p, 1s similar to pgaa and D is a partially accurate classifier.

(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D™ (x) =
Pdata ()
pdata(‘”)"‘pg.(m). o ; ) )
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p; = pgaa. The discriminator is unable to differentiate between

the two distributions, i.e. D(x) = 2.

(c) After an update to (G, gradient of D has guided GG(z) to flow to regions that are more likely

® Goodfellow, lan, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural

Information Processing Systems, pp. 2672-2680. 2014.
17


http://papers.nips.cc/paper/5423-generative-adversarial-nets

GAN Training Problems

e Oscillation between generator and discriminator loss

e Mode collapse (generator produces examples of a particular kind
only)

e Discriminator is too strong, such that the gradient for the
generator vanishes and the generator can't keep up

e Discriminator is too weak, and the generator produces non-
realistic images that fool it too easily (rare problem, though)
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GAN Training Problems

e Discriminator is too strong, such that the gradient for the
generator vanishes and the generator can't keep up

e Can be fixed as follows:

Instead of gradient descent with

1 « Z.
S S (N GED))
Do gradient ascent with

. L3 (0 (=)
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GAN Loss Function in Practice
(will be more clear in the code examples)

Discriminator

e Maximize prediction probability of real as real and fake as fake

e Remember maximizing log likelihood is the same as minimizing negative log
likelihood (i.e., minimizing cross-entropy)

Generator

e Minimize likelihood of the discriminator to make correct predictions (predict fake
as fake; real as real), which can be achieved by maximizing the cross-entropy

e This doesn't work well in practice though because of gradient issues (zero
gradient if the discriminator makes correct predictions, which is not what we
want for the generator)

e Better: flip labels and minimize cross entropy (force the discriminator to output

high probability for fake if an image is real, and high probability for real if an
image is fake)

20



GANs In Practice (1)

Setup a vector of 1's for the real images and a vector of 0's for the fake images

valid = torch.ones(targets.size(0)).float().to(device)
fake = torch.zeros(targets.size(@)).float().to(device)

Sebastian Raschka STAT 479: Deep Learning SS 2019
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GANs In Practice (2)

Setup a vector of 1's for the real images and a vector of 0's for the fake images

valid = torch.ones(targets.size(@)).float().to(device)
fake = torch.zeros(targets.size(@)).float().to(device)

Generate new images from random noise

# Make new 1mages
z = torch.zeros((targets.size(@®), LATENT_DIM)).uniform_(-1.0, 1.0).to(device)
generated_features = model.generator_forward(z)

Sebastian Raschka STAT 479: Deep Learning SS 2019
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GANs In Practice (3)

Setup a vector of 1's for the real images and a vector of 0's for the fake images

valid = torch.ones(targets.size(0)).float().to(device)
fake = torch.zeros(targets.size(@)).float().to(device)

Generate new images from random noise

# Make new 1mages
z = torch.zeros((targets.size(®), LATENT_DIM)).uniform_(-1.0, 1.0).to(device)

generated_features = model.generator_forward(z)

(Generator Loss:

Minimizing likelihood that discriminator makes a correct prediction can be achieved by
maximizing likelihood that discriminator makes a wrong prediction (predicting valid images).

Maximizing likelihood is the same as minimizing negative log likelihood

# Loss for fooling the discriminator
discr_pred = model.discriminator_forward(generated_features.view(targets.size(@), 1, 28, 28))

gener_loss = F.binary_cross_entropy(discr_pred, valid)
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GANs In Practice (3)

Setup a vector of 1's for the real images and a vector of 0's for the fake images

valid
fake

Genet

# Mak
z = 1
gener

For reference, from Lecture 8:

Ha(y) = — Z (ym log(al) + (1 — y!) log(1 — a“]))

(]
Binary Cross Entropy

. -

(Generator Loss:

ce)

Minimizing likelihood that discriminator makes a correct prediction can be achieved by
maximizing likelihood that discriminator makes a wrong prediction (predicting valid images).

Maximizing likelihood is the same as minimizing negative log likelihood

# Loss for fooling the discriminator
discr_pred = model.discriminator_forward(generated_features.view(targets.size(@), 1, 28, 28))

gener_loss = F.binary_cross_entropy(discr_pred, valid)
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GANs In Practice (4)

Discriminator Loss:

Train discriminator to recognize real images as real

discr_pred_real = model.discriminator_forward(features.view(targets.size(®), 1, 28, 28))
real_loss = F.binary_cross_entropy(discr_pred_real, valid)

discr_pred_fake = model.discriminator_forward(generated_features.view(targets.size(9), 1, 28, 28).detach())
fake_loss = F.binary_cross_entropy(discr_pred_fake, fake)

discr_loss = 0.5%(real_loss + fake_loss)

Train discriminator to recognize generated images as fake

Combine fake & real parts
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GANs In Practice (5)

Use separate optimizers for generator and discriminator

# Make new 1mages
z = torch.zeros((targets.siz LATENT_DIM)).uniform_(-1.0, 1.0).to(device)

generated_features = model<generator_forward(z)

# Loss for fooling the discrimfinator
discr_pred = model discrimingtor_forward(generated_features.view(targets.size(@), 1, 28, 28))

gener_loss = E<binary_cros¢ _entropy(discr_pred, valid)

optim_gener.zero_grad()
gener_loss.backward()
optim_gener.step()

discr_pred_real &~ model.discriminator_forward(features.view(targets.size(0), 1, 28, 28))
real_loss = F.Winary_cross_entropy(discr_pred_real, valid)

discr_pred_f#ke = model.discriminator_forward(generated_features.view(targets.size(@), 1, 28, 28).detach().
fake_loss F.binary_cross_entropy(discr_pred_fake, fake)

discr_losg = 0.5%(real_loss + fake_loss)
optim_discr.zero_grad()

discr_loss.backward()
optim_discr.step()
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GANs In Practice (5)

Use separate optimizers for generator and discriminator

# Make new 1mages
z = torch.zeros((targets.sizg0),/LATENT_DIM)).uniform_(-1.0, 1.0).to(device)
generated_features = model<generAtor_forward(z)

# Loss for fooling the discrimfinator
discr_pred = model discrimingtor_forward(generated_features.view(targets.size(@), 1, 28, 28))

gener_loss = E<binary_cros¢_entropy(discr_pred, valid)

opLim_gener-zero_grad() Because we optimize different sets of parameters
gener_loss.backward()

opt

optim_gener = torch.optim.Adam(model.generator.parameters(), lr=generator_learning_rate)

# —4 optim_discr = torch.optim.Adam(model.discriminator.parameters(), lr=discriminator_learning_rate)

discr_pred_real ~ model.discriminator_forward(features.view(targets.size(@), 1, 28, 28))
real_loss = F.Winary_cross_entropy(discr_pred_real, valid)

discr_pred_f#ke = model.discriminator_forward(generated_features.view(targets.size(@), 1, 28, 28).detach().
fake_loss =/F.binary_cross_entropy(discr_pred_fake, fake)

discr_losg = 0.5%(real_loss + fake_loss)
optim_discr.zero_grad()

discr_loss.backward()
optim_discr.step()
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Full Code Examples (1)
MNIST Multilayer Perceptron GAN

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17 gans/code/gan-mlp-
mnist.ipynb

- generator loss

discriminator loss

loss
1 -
0 .
0 10000 20000 30000 40000
Generated images Iterations
0 0 01 - 0
5 - 5 - 5 - " 1 5 -
10 - 10 A 10 A ;‘ 10 A
15 - 15 - 15 A 15 A
20 1 20 - 20 1 -~ 20
n s o
25 - 25 - 25 - 25 -
] ] ] L . ] L ] ] ] L ] Ll ] L
10 20 0 10 20 0 10 20 0 10 20 0 10 20
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Full Code Examples (2)
MNIST Convolutional GAN that fails

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17 gans/code/gan-cnn-mnist-

converge-but-fail.ipynb
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Full Code Examples (3)

MNIST Convolutional GAN with mode collapse

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17 gans/code/gan-halfcnn-

mnist-mode-collapse.ipynb

o - generator loss
30 4 - discriminator loss
25 -
20 -
loss
10 -
5 -
0 4
0 10000 20000 30000 40000
iterations
Generated images
0 04 0 01 0 01 0 04 0 01
10 - 10 - 10 1 10 - ' 10 1 | 10 - ol 10 - I o | 10 -
20 1 ' 0 0 0 - SR | 0 - 0 | 0 1 ; 0 | 0 1
0 1 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
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Full Code Examples (4)
MNIST Convolutional GAN -- not great

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17 gans/code/gan-cnn-mnist-
not-great.ipynb

25 -
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Full Code Examples (5)

MNIST Convolutional GAN -- relatively good

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17 gans/code/gan-cnn-
mnist.ipynb

- generator loss
10 - discriminator loss
09 ) )
Compared to the previous slide,
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Full Code Examples (6)

Like previous slide but with label smoothing: Replace real images (1's) by 0.9
based on idea in
@ Salimans, Tim, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.

"Improved techniques for training GANs." In Advances in Neural Information Processing Systems,
PP. 2234—2242 2016 11 - —— generator loss

discriminator loss

10 -

0.9 -
loss

0.8 -

0.7 1

0.6 1

0.5 1

0 10000 20000 30000 40000

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17 gans/code/gan-cnn-mnist-

label-smoothing.ipynb
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http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-label-smoothing.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-label-smoothing.ipynb

There are many more flavors of GANs that we have time to
cover :)

A tentative list of named GANs https://github.com/hindupuravinash/the-gan-zoo

e 3D-ED-GAN - Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks

e 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)

e 3D-IWGAN - Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)

e 3D-PhysNet - 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations

e 3D-RecGAN - 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)

e ABC-GAN - ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks
(github)

e ABC-GAN - GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference

e X-GANs - X-GANs: Image Reconstruction Made Easy for Extreme Cases

e XGAN - XGAN: Unsupervised Image-to-Image Translation for many-to-many Mappings

e ZipNet-GAN - ZipNet-GAN: Inferring Fine-grained Mobile Traffic Patterns via a Generative Adversarial Neural Network
¢ a-GAN - Variational Approaches for Auto-Encoding Generative Adversarial Networks (github)

e B-GAN - Annealed Generative Adversarial Networks

e A-GAN - Triangle Generative Adversarial Networks > 500 ”g ht now
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There are many more flavors of GANs that we have time to
cover :)

A tentative list of named GANs https://github.com/hindupuravinash/the-gan-zoo

e 3D-ED-GAN - Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks

e 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)
e 3D-IWGAN - Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)

e 3D-PhysNet - 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations

e 3D-RecGAN - 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)

e ABC-GAN - ABC-GAN: Adaptive Blur and Control for i

(github) If | had to pick 3, | would highlight
e ABC-GAN - GANSs for LIFE: Generative Adversarial Net ® Wass erstein G AN
- ® Cycle GAN

e X-GANs - X-GANs: Image Reconstruction Made Easy for E ® CGAN (conditional GAN)
e XGAN - XGAN: Unsupervised Image-to-Image Translation

e ZipNet-GAN - ZipNet-GAN: Inferring Fine-grained Mobile Traffic Patterns via a Generative Adversarial Neural Network
¢ a-GAN - Variational Approaches for Auto-Encoding Generative Adversarial Networks (github)

e B-GAN - Annealed Generative Adversarial Networks

e A-GAN - Triangle Generative Adversarial Networks > 500 ”g ht now

Sebastian Raschka STAT 479: Deep Learning SS 2019 36


https://github.com/hindupuravinash/the-gan-zoo

Are GANSs supervised or

unsupervised?

Sebastian Raschka

STAT 479: Deep Learning

SS 2019
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Further Reading Suggestions

® Original GAN paper
Goodfellow, lan, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in
Neural Information Processing Systems, pp. 2672-2680. 2014.

® Salimans, Tim, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.

"Improved techniques for training GANs." In Advances in Neural Information Processing
Systems, pp. 2234-2242. 2016.

® Open Questions about Generative Adversarial Networks by Augustus Odena, https://
distill.pub/2019/gan-open-problems/
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