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https://github.com/junyanz/CycleGAN 
https://www.youtube.com/watch?v=9reHvktowLY

https://github.com/junyanz/CycleGAN
https://www.youtube.com/watch?v=9reHvktowLY
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https://github.com/junyanz/CycleGAN 
https://www.youtube.com/watch?v=9reHvktowLY

Question: Why does the model change 
the background as well?

https://github.com/junyanz/CycleGAN
https://www.youtube.com/watch?v=9reHvktowLY
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Generative Adversarial Networks (GAN)

• The original purpose is to generate new data 

• Classically for generating new images, but applicable to wide 
range of domains 

• Learns the training set distribution and can generate new 
images that have never been seen before 

• In contrast to e.g., autoregressive models or RNNs 
(generating one word at a time), GANs generate the whole 
output all at once
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Real Image

Discriminator

p(y = ”real image”|x)
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Generator

Random Noise

New Image

Real Image

Discriminator

Real Image

Discriminator

p(y = ”real image”|x0)
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Generator

Random Noise

New Image

Real Image

Discriminator

Real Image

Discriminator

Discriminator: learns to become 
better as distinguishing real from 
generated images

Generator: learns to generate 
better images to fool the 
discriminator

Adversarial Game



Sebastian Raschka           STAT 479: Deep Learning            SS 2019 �8

While the best remedy for mathiness is to avoid it, some papers go further with exemplary
exposition. A recent paper [8] on counterfactual reasoning covers a large amount of mathematical
ground in a down-to-earth manner, with numerous clear connections to applied empirical problems.
This tutorial, written in clear service to the reader, has helped to spur work in the burgeoning
community studying counterfactual reasoning for ML.

3.4 Misuse of Language

We identify three common avenues of language misuse in machine learning: suggestive definitions,
overloaded terminology, and suitcase words.

3.4.1 Suggestive Definitions

In the first avenue, a new technical term is coined that has a suggestive colloquial meaning, thus
sneaking in connotations without the need to argue for them. This often manifests in anthropo-
morphic characterizations of tasks (reading comprehension [31] and music composition [59]) and
techniques (curiosity [66] and fear [48]). A number of papers name components of proposed models
in a manner suggestive of human cognition, e.g. “thought vectors” [36] and the “consciousness prior”
[4]. Our goal is not to rid the academic literature of all such language; when properly qualified, these
connections might communicate a fruitful source of inspiration. However, when a suggestive term is
assigned technical meaning, each subsequent paper has no choice but to confuse its readers, either
by embracing the term or by replacing it.

Describing empirical results with loose claims of “human-level” performance can also portray
a false sense of current capabilities. Take, for example, the “dermatologist-level classification of
skin cancer” reported in [21]. The comparison to dermatologists conceals the fact that classifiers
and dermatologists perform fundamentally different tasks. Real dermatologists encounter a wide
variety of circumstances and must perform their jobs despite unpredictable changes. The machine
classifier, however, only achieves low error on i.i.d. test data. In contrast, claims of human-level
performance in [29] are better-qualified to refer to the ImageNet classification task (rather than
object recognition more broadly). Even in this case, one careful paper (among many less careful
[21, 57, 75]) was insufficient to put the public discourse back on track. Popular articles continue
to characterize modern image classifiers as “surpassing human abilities and effectively proving that
bigger data leads to better decisions” [23], despite demonstrations that these networks rely on
spurious correlations, e.g. misclassifying “Asians dressed in red” as ping-pong balls [73].

Deep learning papers are not the sole offenders; misuse of language plagues many subfields of
ML. [49] discusses how the recent literature on fairness in ML often overloads terminology bor-
rowed from complex legal doctrine, such as disparate impact, to name simple equations expressing
particular notions of statistical parity. This has resulted in a literature where “fairness”, “opportu-
nity”, and “discrimination” denote simple statistics of predictive models, confusing researchers who
become oblivious to the difference, and policymakers who become misinformed about the ease of
incorporating ethical desiderata into ML.

3.4.2 Overloading Technical Terminology

A second avenue of misuse consists of taking a term that holds precise technical meaning and
using it in an imprecise or contradictory way. Consider the case of deconvolution, which formally
describes the process of reversing a convolution, but is now used in the deep learning literature to
refer to transpose convolutions (also called up-convolutions) as commonly found in auto-encoders
and generative adversarial networks. This term first took root in deep learning in [79], which does
address deconvolution, but was later over-generalized to refer to any neural architectures using
upconvolutions [78, 50]. Such overloading of terminology can create lasting confusion. New machine
learning papers referring to deconvolution might be (i) invoking its original meaning, (ii) describing
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upconvolution, or (iii) attempting to resolve the confusion, as in [28], which awkwardly refers to
“upconvolution (deconvolution)”.

As another example, generative models are traditionally models of either the input distribution
p(x) or the joint distribution p(x, y). In contrast, discriminative models address the conditional
distribution p(y | x) of the label given the inputs. However, in recent works, “generative model”
imprecisely refers to any model that produces realistic-looking structured data. On the surface, this
may seem consistent with the p(x) definition, but it obscures several shortcomings—for instance,
the inability of GANs or VAEs to perform conditional inference (e.g. sampling from p(x2 | x1) where
x1 and x2 are two distinct input features). Bending the term further, some discriminative models
are now referred to as generative models on account of producing structured outputs [76], a mistake
that we (ZL) make in [47]. Seeking to resolve the confusion and provide historical context, [58]
distinguishes between prescribed and implicit generative models.

Revisiting batch normalization, [33] describes covariate shift as a change in the distribution of
model inputs. In fact, covariate shift refers to a specific type of shift where although the input
distribution p(x) might change, the labeling function p(y|x) does not [27]. Moreover, due to the
influence of [33], Google Scholar lists batch normalization as the first reference on searches for
“covariate shift”.

Among the consequences of mis-using language is that (as with generative models) we might
conceal lack of progress by redefining an unsolved task to refer to something easier. This often
combines with suggestive definitions via anthropomorphic naming. Language understanding and
reading comprehension, once grand challenges of AI, now refer to making accurate predictions on
specific datasets [31].

3.4.3 Suitcase Words

Finally, we discuss the overuse of suitcase words in ML papers. Coined by Minsky in the 2007 book
The Emotion Machine [56], suitcase words pack together a variety of meanings. Minsky describes
mental processes such as consciousness, thinking, attention, emotion, and feeling that may not share
“a single cause or origin”. Many terms in ML fall into this category. For example, [46] notes that
interpretability holds no universally agreed-upon meaning, and often references disjoint methods and
desiderata. As a consequence, even papers that appear to be in dialogue with each other may have
different concepts in mind.

As another example, generalization has both a specific technical meaning (generalizing from train
to test) and a more colloquial meaning that is closer to the notion of transfer (generalizing from one
population to another) or of external validity (generalizing from an experimental setting to the real
world) [67]. Conflating these notions leads to overestimating the capabilities of current systems.

Suggestive definitions and overloaded terminology can contribute to the creation of new suit-
case words. In the fairness literature, where legal, philosophical, and statistical language are often
overloaded, terms like bias become suitcase words that must be subsequently unpacked [17].

In common speech and as aspirational terms, suitcase words can serve a useful purpose. Perhaps
the suitcase word reflects an overarching concept that unites the various meanings. For example,
artificial intelligence might be well-suited as an aspirational name to organize an academic depart-
ment. On the other hand, using suitcase words in technical arguments can lead to confusion. For
example, [6] writes an equation (Box 4) involving the terms intelligence and optimization power,
implicitly assuming that these suitcase words can be quantified with a one-dimensional scalar.

4 Speculation on Causes Behind the Trends

Do the above patterns represent a trend, and if so, what are the underlying causes? We speculate
that these patterns are on the rise and suspect several possible causal factors: complacency in the
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Lipton, Z. C., & Steinhardt, J. (2018). Troubling Trends in Machine Learning Scholarship. 
arXiv preprint arXiv:1807.03341.

Sidenote: Transposed Convolutions (Last Lecture)

https://arxiv.org/abs/1807.03341
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Lipton, Z. C., & Steinhardt, J. (2018). Troubling Trends in Machine Learning Scholarship. 
arXiv preprint arXiv:1807.03341.

If you wonder how the term "generative" fits in the 
context of your other statistics classes ...

upconvolution, or (iii) attempting to resolve the confusion, as in [28], which awkwardly refers to
“upconvolution (deconvolution)”.

As another example, generative models are traditionally models of either the input distribution
p(x) or the joint distribution p(x, y). In contrast, discriminative models address the conditional
distribution p(y | x) of the label given the inputs. However, in recent works, “generative model”
imprecisely refers to any model that produces realistic-looking structured data. On the surface, this
may seem consistent with the p(x) definition, but it obscures several shortcomings—for instance,
the inability of GANs or VAEs to perform conditional inference (e.g. sampling from p(x2 | x1) where
x1 and x2 are two distinct input features). Bending the term further, some discriminative models
are now referred to as generative models on account of producing structured outputs [76], a mistake
that we (ZL) make in [47]. Seeking to resolve the confusion and provide historical context, [58]
distinguishes between prescribed and implicit generative models.

Revisiting batch normalization, [33] describes covariate shift as a change in the distribution of
model inputs. In fact, covariate shift refers to a specific type of shift where although the input
distribution p(x) might change, the labeling function p(y|x) does not [27]. Moreover, due to the
influence of [33], Google Scholar lists batch normalization as the first reference on searches for
“covariate shift”.

Among the consequences of mis-using language is that (as with generative models) we might
conceal lack of progress by redefining an unsolved task to refer to something easier. This often
combines with suggestive definitions via anthropomorphic naming. Language understanding and
reading comprehension, once grand challenges of AI, now refer to making accurate predictions on
specific datasets [31].

3.4.3 Suitcase Words

Finally, we discuss the overuse of suitcase words in ML papers. Coined by Minsky in the 2007 book
The Emotion Machine [56], suitcase words pack together a variety of meanings. Minsky describes
mental processes such as consciousness, thinking, attention, emotion, and feeling that may not share
“a single cause or origin”. Many terms in ML fall into this category. For example, [46] notes that
interpretability holds no universally agreed-upon meaning, and often references disjoint methods and
desiderata. As a consequence, even papers that appear to be in dialogue with each other may have
different concepts in mind.

As another example, generalization has both a specific technical meaning (generalizing from train
to test) and a more colloquial meaning that is closer to the notion of transfer (generalizing from one
population to another) or of external validity (generalizing from an experimental setting to the real
world) [67]. Conflating these notions leads to overestimating the capabilities of current systems.

Suggestive definitions and overloaded terminology can contribute to the creation of new suit-
case words. In the fairness literature, where legal, philosophical, and statistical language are often
overloaded, terms like bias become suitcase words that must be subsequently unpacked [17].

In common speech and as aspirational terms, suitcase words can serve a useful purpose. Perhaps
the suitcase word reflects an overarching concept that unites the various meanings. For example,
artificial intelligence might be well-suited as an aspirational name to organize an academic depart-
ment. On the other hand, using suitcase words in technical arguments can lead to confusion. For
example, [6] writes an equation (Box 4) involving the terms intelligence and optimization power,
implicitly assuming that these suitcase words can be quantified with a one-dimensional scalar.

4 Speculation on Causes Behind the Trends

Do the above patterns represent a trend, and if so, what are the underlying causes? We speculate
that these patterns are on the rise and suspect several possible causal factors: complacency in the
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Why Are GANs Are Called Generative Models?

• The generative part comes from the fact that the model "generates" 
new data 

• Usually, generative models use an approximation to compute the 
usually intractable distribution; here, the discriminator part does that 
approximation 

• So, it does learn p(x) 

• Vanilla GANs cannot do conditional inference, though
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When Does a GAN Converge?
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GAN Objective

min
G

max
D

L(D,G) = Ex⇠ptan(x)[logD(x)] + Ez⇠px(z)[log(1�D(G(z)))]
<latexit sha1_base64="cco4wVztRDvEnt68W0zxEuf+mOc="></latexit>
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min
G

max
D

L(D,G) = Ex⇠ptan(x)[logD(x)] + Ez⇠px(z)[log(1�D(G(z)))]
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Discriminator gradient for update (gradient ascent):
predict well on real images 
=> probability close to 1

predict well on fake images 
=> probability close to 0
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min
G

max
D

L(D,G) = Ex⇠ptan(x)[logD(x)] + Ez⇠px(z)[log(1�D(G(z)))]
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. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:
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end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:
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end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

• Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, 
Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural 
Information Processing Systems, pp. 2672-2680. 2014.

http://papers.nips.cc/paper/5423-generative-adversarial-nets
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GAN Convergence

• Converges when Nash-equilibrium (Game Theory concept) is reached 
in the minmax (zero-sum) game

min
G

max
D

L(D,G) = Ex⇠ptan(x)[logD(x)] + Ez⇠px(z)[log(1�D(G(z)))]
<latexit sha1_base64="cco4wVztRDvEnt68W0zxEuf+mOc="></latexit>

• Nash-Equilibrium in Game Theory is reached when the actions of one 
player won't change depending on the opponent's actions 

• Here, this means that the GAN produces realistic images and the 
discriminator outputs random predictions (probabilities close to 0.5)
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• Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, 
Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural 
Information Processing Systems, pp. 2672-2680. 2014.
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:
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end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:
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end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

http://papers.nips.cc/paper/5423-generative-adversarial-nets
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GAN Training Problems

• Oscillation between generator and discriminator loss 

• Mode collapse (generator produces examples of a particular kind 
only) 

• Discriminator is too strong, such that the gradient for the 
generator vanishes and the generator can't keep up 

• Discriminator is too weak, and the generator produces non-
realistic images that fool it too easily (rare problem, though)
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GAN Training Problems
• Discriminator is too strong, such that the gradient for the 

generator vanishes and the generator can't keep up 

• Can be fixed as follows: 

rWG

1

n

nX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘

<latexit sha1_base64="ME07RVo9qxT+znVFpjOpufWfg/c="></latexit>

Instead of gradient descent with 

Do gradient ascent with

rWG

1

n

nX

i=1

log
⇣
D

⇣
G
⇣
z(i)

⌘⌘⌘

<latexit sha1_base64="ApxiiDEejL0j1l+CBLdbp67dI40="></latexit>
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GAN Loss Function in Practice  
(will be more clear in the code examples)

• Maximize prediction probability of real as real and fake as fake 
• Remember maximizing log likelihood is the same as minimizing negative log 

likelihood (i.e., minimizing cross-entropy) 

• Minimize likelihood of the discriminator to make correct predictions (predict fake 
as fake; real as real), which can be achieved by maximizing the cross-entropy 

• This doesn't work well in practice though because of gradient issues (zero 
gradient if the discriminator makes correct predictions, which is not what we 
want for the generator) 

• Better: flip labels and minimize cross entropy (force the discriminator to output 
high probability for fake if an image is real, and high probability for real if an 
image is fake)

Discriminator

Generator
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GANs In Practice (1)

Setup a vector of 1's for the real images and a vector of 0's for the fake images
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GANs In Practice (2)

Setup a vector of 1's for the real images and a vector of 0's for the fake images

Generate new images from random noise
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GANs In Practice (3)

Setup a vector of 1's for the real images and a vector of 0's for the fake images

Generate new images from random noise

Minimizing likelihood that discriminator makes a correct prediction can be achieved by 
maximizing likelihood that discriminator makes a wrong prediction (predicting valid images). 
Maximizing likelihood is the same as minimizing negative log likelihood 

Generator Loss:
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GANs In Practice (3)

Setup a vector of 1's for the real images and a vector of 0's for the fake images

Generate new images from random noise

Minimizing likelihood that discriminator makes a correct prediction can be achieved by 
maximizing likelihood that discriminator makes a wrong prediction (predicting valid images). 
Maximizing likelihood is the same as minimizing negative log likelihood 

Generator Loss:

Binary Cross Entropy

Ha(y) = �
X

i

⇣
y
[i] log(a[i]) + (1� y

[i]) log(1� a
[i])

⌘

<latexit sha1_base64="95ojl1CfiktxvQ90gy4DeyHtlFs="></latexit>

For reference, from Lecture 8:
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GANs In Practice (4)

Discriminator Loss:

Train discriminator to recognize generated images as fake

Train discriminator to recognize real images as real

Combine fake & real parts
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GANs In Practice (5)
Use separate optimizers for generator and discriminator
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GANs In Practice (5)
Use separate optimizers for generator and discriminator

Because we optimize different sets of parameters
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For Reference: Some Real MNIST Images
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Full Code Examples (1)
MNIST Multilayer Perceptron GAN

loss

iterationsGenerated images

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-mlp-
mnist.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-mlp-mnist.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-mlp-mnist.ipynb
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Full Code Examples (2)
MNIST Convolutional GAN that fails

loss

iterationsGenerated images

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-
converge-but-fail.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-converge-but-fail.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-converge-but-fail.ipynb
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Full Code Examples (3)
MNIST Convolutional GAN with mode collapse

loss

iterations
Generated images

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-halfcnn-
mnist-mode-collapse.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-halfcnn-mnist-mode-collapse.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-halfcnn-mnist-mode-collapse.ipynb
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Full Code Examples (4)
MNIST Convolutional GAN -- not great

loss

iterations

Generated images

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-
not-great.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-not-great.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-not-great.ipynb
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Full Code Examples (5)
MNIST Convolutional GAN -- relatively good

loss

iterations

Generated images

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-
mnist.ipynb

Compared to the previous slide, 
this has BatchNorm

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist.ipynb
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• Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 
"Improved techniques for training GANs." In Advances in Neural Information Processing Systems, 
pp. 2234-2242. 2016.

Like previous slide but with label smoothing: Replace real images (1's) by 0.9  
based on idea in

Full Code Examples (6)

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-
label-smoothing.ipynb

loss

http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-label-smoothing.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L17_gans/code/gan-cnn-mnist-label-smoothing.ipynb
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https://github.com/hindupuravinash/the-gan-zoo

There are many more flavors of GANs that we have time to 
cover :)

A tentative list of named GANs

...

> 500 right now

https://github.com/hindupuravinash/the-gan-zoo
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https://github.com/hindupuravinash/the-gan-zoo

There are many more flavors of GANs that we have time to 
cover :)

A tentative list of named GANs

...

> 500 right now

If I had to pick 3, I would highlight 
•Wasserstein GAN 
•Cycle GAN 
•CGAN (conditional GAN)

https://github.com/hindupuravinash/the-gan-zoo


Sebastian Raschka           STAT 479: Deep Learning            SS 2019 �37

Are GANs supervised or 
unsupervised?
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• Original GAN paper 
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil 
Ozair, Aaron Courville, and Yoshua Bengio. "Generative Adversarial Nets." In Advances in 
Neural Information Processing Systems, pp. 2672-2680. 2014. 

• Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 
"Improved techniques for training GANs." In Advances in Neural Information Processing 
Systems, pp. 2234-2242. 2016. 

• Open Questions about Generative Adversarial Networks by Augustus Odena, https://
distill.pub/2019/gan-open-problems/ 

• How to Train a GAN? Tips and Tricks to Make GANs Work by Soumith Chintala  
(PyTorch Dev.) https://github.com/soumith/ganhacks

Further Reading Suggestions

http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans
https://distill.pub/2019/gan-open-problems/
https://distill.pub/2019/gan-open-problems/
https://github.com/soumith/ganhacks

