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STAT 479: Deep Learning, Spring 2019 
Sebastian Raschka 

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Lecture 15

A Short Introduction to  
Autoencoders

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/
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Unsupervised Learning

Working with datasets without considering a/the target variable

• Finding hidden structures in data 
• Data compression 
• Clustering 
• Retrieving similar objects 
• Exploratory Data Analysis 
• Generating new examples

Some Applications and Goals:
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Principal Component Analysis (PCA)
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2) Transform features onto directions of maximum variance
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3) Usually consider a subset of vectors of most variance 
(dimensionality reduction)
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Principal Component Analysis (PCA)

Another view on PCA is minimizing the 
squared offsets

x2

PC1

x1

Note in least-squares linear 
regression, we minimize the 
vertical offsets
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Inputs

hidden units / 
embedded space / 
latent space / 
bottleneck Outputs  

= reconstructed inputs

Encoder Decoder

A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder
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Inputs

hidden units / 
embedded space / 
latent space / 
bottleneck Outputs 

Encoder Decoder

A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder

If we don't use 
non-linear activation  
functions and 
minimize the MSE, 
this is very similar 
to PCA

However, the latent 
dimensions will not 
necessarily be 
orthogonal 
and will have  
~ same variance

L(x,x0) = ||x� x0||22 =
X

i

(xi � x0
i)

2

<latexit sha1_base64="/k1rvfwfPBkumSpPtU2v5/ePBjs="></latexit>
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A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder

Question: 
If we can achieve the same with  
PCA, which is essentially a kind of matrix 
factorization that is more efficient than 
Backprop + SGD, why bother with autoencoders?
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Potential Autoencoder Applications

After training, disregard this part

Use embedding as input to classic machine 
learning methods (SVM, KNN, Random Forest, ...)

Or, similar to transfer learning, train autoencoder 
on large image dataset, then fine tune encoder 
part on your own, smaller datset and/or provide 
your own output (classification) layer

Latent space can also be used for visualization 
(EDA, clustering), but there are better methods 
for that
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.

VAN DER MAATEN AND HINTON
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(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

Figure 2: Visualizations of 6,000 handwritten digits from the MNIST data set.

2590

Shown are 6000 images from MNIST projected in 2D

Note that MNIST has  
28 x 28 = 784 dimensions 

(t-SNE is only meant for visualization not for preparing datasets!)

For details, see  
https://github.com/rasbt/
stat479-machine-learning-fs18/
blob/master/14_feat-extract/
14_feat-extract_slides.pdf

Another way to learn embeddings ...

https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf
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A Simple Autoencoder

Encoder Decoder

Reshape 
28*28 => 784

Reshape 
784 => 28*28

32 dim

fully connected layer 
+ leaky relu 
784 => 32

fully connected layer 
+ sigmoid 
32 => 784

original

reconstructed

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L15_autoencoder/code/ae-simple.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-simple.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-simple.ipynb
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A Convolutional Autoencoder

Encoder Decoder

original

reconstructed

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L15_autoencoder/code/ae-conv.ipynb

1 or more  
convolutional layers

1 or more 
 "de"convolutional layers

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-conv.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-conv.ipynb
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Transposed Convolution

• Allows us to increase the size of the output feature map 
compared to the input feature map 

•  Synonyms: 

‣ often also (incorrectly) called "deconvolution" or 
sometimes (mathematically, deconvolution is defined as 
the inverse of convolution, which is different from 
transposed convolutions) 

‣ the term "unconv" is sometimes also used 

‣ fractionally strided convolution is another term for that
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Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

14

input

output

Regular Convolution:

Figure 4.1: The transpose of convolving a 3⇥ 3 kernel over a 4⇥ 4 input using
unit strides (i.e., i = 4, k = 3, s = 1 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input padded with a 2⇥ 2 border of zeros using unit
strides (i.e., i0 = 2, k0 = k, s0 = 1 and p0 = 2).

Figure 4.2: The transpose of convolving a 4⇥4 kernel over a 5⇥5 input padded
with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5, k = 4, s = 1 and
p = 2). It is equivalent to convolving a 4 ⇥ 4 kernel over a 6 ⇥ 6 input padded
with a 1 ⇥ 1 border of zeros using unit strides (i.e., i0 = 6, k0 = k, s0 = 1 and
p0 = 1).

Figure 4.3: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1). It is
equivalent to convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5 input using half padding
and unit strides (i.e., i0 = 5, k0 = k, s0 = 1 and p0 = 1).
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input

output

Transposed Convolution (emulated with direct convolution):

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint 
arXiv:1603.07285 (2016).

https://arxiv.org/abs/1603.07285
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output = s(n� 1) + k � 2p
<latexit sha1_base64="wDcSc+9jm0LLEge6NGheeZ1pTKs=">AAACBnicbVDLSgMxFM3UV62vUZciBItQkZaZKuhGKLpxWcE+oB1KJk3b0ExmSO6IZejKjb/ixoUibv0Gd/6NaTsLrR4IHM65l5tz/EhwDY7zZWUWFpeWV7KrubX1jc0te3unrsNYUVajoQhV0yeaCS5ZDTgI1owUI4EvWMMfXk38xh1TmofyFkYR8wLSl7zHKQEjdez9NrB7wAkOY4hiwOMLXZBF9+h4WCzjqGPnnZIzBf5L3JTkUYpqx/5sd0MaB0wCFUTrlutE4CVEAaeCjXPtWLOI0CHps5ahkgRMe8k0xhgfGqWLe6EyTwKeqj83EhJoPQp8MxkQGOh5byL+57Vi6J17CZcmIJN0dqgXCwwhnnSCu1wxCmJkCKGKm79iOiCKUDDN5UwJ7nzkv6ReLrknpfLNab5ymdaRRXvoABWQi85QBV2jKqohih7QE3pBr9aj9Wy9We+z0YyV7uyiX7A+vgGq3ZdN</latexit>

Transposed Convolution

?
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Transposed Convolution

strides: in transposed convolutions, we stride over the output; 
hence, larger strides will result in larger outputs  
(opposite to regular convolutions)

Figure 4.4: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2). It is equivalent
to convolving a 3 ⇥ 3 kernel over a 7 ⇥ 7 input using unit strides (i.e., i0 = 7,
k0 = k, s0 = 1 and p0 = 0).

Figure 4.5: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
2⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input (with 1 zero inserted between inputs) padded
with a 2⇥ 2 border of zeros using unit strides (i.e., i0 = 2, ĩ0 = 3, k0 = k, s0 = 1
and p0 = 2).

Figure 4.6: The transpose of convolving a 3⇥3 kernel over a 5⇥5 input padded
with a 1 ⇥ 1 border of zeros using 2 ⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and
p = 1). It is equivalent to convolving a 3 ⇥ 3 kernel over a 3 ⇥ 3 input (with
1 zero inserted between inputs) padded with a 1⇥ 1 border of zeros using unit
strides (i.e., i0 = 3, ĩ0 = 5, k0 = k, s0 = 1 and p0 = 1).

25

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint 
arXiv:1603.07285 (2016).

You can think of it 
as this:

https://arxiv.org/abs/1603.07285
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https://distill.pub/2016/deconv-checkerboard/

A good interactive article highlighting the dangers of transposed conv.

In short, it is recommended to replace transposed conv. 
by upsampling (interpolation) followed by regular convolution

https://distill.pub/2016/deconv-checkerboard/
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A Convolutional Autoencoder with Nearest Neighbor 
Interpolation

Encoder Decoder

original

reconstructed

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L15_autoencoder/code/ae-interpolate.ipynb

Convolutional layers 
+ maxpooling

Convolutional layers 
+ interpolation

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-interpolate.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-interpolate.ipynb
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padding: in transposed convolutions, we pad the output; hence, 
larger padding will result in smaller output maps  
(opposite to regular convolutions)

Transposed Convolution

Figure 4.4: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2). It is equivalent
to convolving a 3 ⇥ 3 kernel over a 7 ⇥ 7 input using unit strides (i.e., i0 = 7,
k0 = k, s0 = 1 and p0 = 0).

Figure 4.5: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
2⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input (with 1 zero inserted between inputs) padded
with a 2⇥ 2 border of zeros using unit strides (i.e., i0 = 2, ĩ0 = 3, k0 = k, s0 = 1
and p0 = 2).

Figure 4.6: The transpose of convolving a 3⇥3 kernel over a 5⇥5 input padded
with a 1 ⇥ 1 border of zeros using 2 ⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and
p = 1). It is equivalent to convolving a 3 ⇥ 3 kernel over a 3 ⇥ 3 input (with
1 zero inserted between inputs) padded with a 1⇥ 1 border of zeros using unit
strides (i.e., i0 = 3, ĩ0 = 5, k0 = k, s0 = 1 and p0 = 1).
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for a 2x2 input (previous slide) the output would be 3x3

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint 
arXiv:1603.07285 (2016).

https://arxiv.org/abs/1603.07285
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Side-note: Often you will also see binary cross entropy 
used as a loss function instead of MSE

I find BCE for the autoencoder reconstruction loss problematic, 
but it does seem to work well in practice ... (because it is not symmetric)
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Encoder Decoder

Autoencoders and Dropout

Add dropout layers to force networks to 
learn redundant features
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Denoising Autoencoder

Add dropout after the input, or add noise to the input to learn 
to denoise images

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th 
International Conference on Machine Learning (pp. 1096-1103). ACM.

Encoder Decoder

http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
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Sparse Autoencoder
Add L1 penalty to the loss to learn sparse feature 
representations

Encoder Decoder

X

i

|Enci(x)|
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L = ||x�Dec(Enc(x))||22 +
X

i

|Enci(x)|
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