
Sebastian Raschka STAT 479: Deep Learning SS 2019 1

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Lecture 15

A Short Introduction to  
Autoencoders

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Sebastian Raschka STAT 479: Deep Learning SS 2019 2

Unsupervised Learning

Working with datasets without considering a/the target variable

• Finding hidden structures in data
• Data compression
• Clustering
• Retrieving similar objects
• Exploratory Data Analysis
• Generating new examples

Some Applications and Goals:

Sebastian Raschka STAT 479: Deep Learning SS 2019 3

Principal Component Analysis (PCA)

x2

PC1
PC2

x1

x2

PC1

PC2

PC2

PC1

1) Find directions of maximum variance

Sebastian Raschka STAT 479: Deep Learning SS 2019 4

x2

PC1
PC2

x1

x2

PC1

PC2

PC2

PC1

2) Transform features onto directions of maximum variance

x2

PC1
PC2

x1

x2

PC1

PC2

PC2

PC1

Principal Component Analysis (PCA)

Sebastian Raschka STAT 479: Deep Learning SS 2019 5

3) Usually consider a subset of vectors of most variance
(dimensionality reduction)

x2

PC1
PC2

x1

x2

PC1

PC2

PC2

PC1

x2

PC1
PC2

PC1

Principal Component Analysis (PCA)

Sebastian Raschka STAT 479: Deep Learning SS 2019 6

Principal Component Analysis (PCA)

Another view on PCA is minimizing the 
squared offsets

x2

PC1

x1

Note in least-squares linear
regression, we minimize the
vertical offsets

Sebastian Raschka STAT 479: Deep Learning SS 2019 7

Inputs

hidden units /
embedded space /
latent space /
bottleneck Outputs  

= reconstructed inputs

Encoder Decoder

A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder

Sebastian Raschka STAT 479: Deep Learning SS 2019 8

Inputs

hidden units /
embedded space /
latent space /
bottleneck Outputs

Encoder Decoder

A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder

If we don't use 
non-linear activation  
functions and
minimize the MSE,
this is very similar 
to PCA

However, the latent
dimensions will not
necessarily be
orthogonal
and will have  
~ same variance

L(x,x0) = ||x� x0||22 =
X

i

(xi � x0
i)

2

<latexit sha1_base64="/k1rvfwfPBkumSpPtU2v5/ePBjs=">AAACSXicbZBLTwIxFIU74APxhbp000gMkCiZQRPdmBDduHCBiTwSwLFTOtDQeaTtGMgwf8+NO3f+BzcuNMaVHSCK6E2afDnnNO09ls+okLr+rCWSC4tLy6mV9Ora+sZmZmu7JryAY1LFHvN4w0KCMOqSqqSSkYbPCXIsRupW/yL26/eEC+q5N3Lok7aDui61KUZSSWbmruUg2cOIhVdRfsyWHQ6iA/jNuagAzyAcjX5ceDhrj0a3JbMUZ1oicEyaH5hUJQY5kxaUk8nqRX088C8YU8iC6VTMzFOr4+HAIa7EDAnRNHRftkPEJcWMROlWIIiPcB91SVOhixwi2uG4iQjuK6UDbY+r40o4VmdvhMgRYuhYKhkvIOa9WPzPawbSPm2H1PUDSVw8ecgOGJQejGuFHcoJlmyoAGFO1V8h7iGOsFTlp1UJxvzKf6FWKhpHxdL1cbZ8Pq0jBXbBHsgDA5yAMrgEFVAFGDyAF/AG3rVH7VX70D4n0YQ2vbMDfk0i+QXbIbDz</latexit>

Sebastian Raschka STAT 479: Deep Learning SS 2019 9

A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder

Question:
If we can achieve the same with  
PCA, which is essentially a kind of matrix
factorization that is more efficient than 
Backprop + SGD, why bother with autoencoders?

Sebastian Raschka STAT 479: Deep Learning SS 2019 10

Potential Autoencoder Applications

After training, disregard this part

Use embedding as input to classic machine 
learning methods (SVM, KNN, Random Forest, ...)

Or, similar to transfer learning, train autoencoder 
on large image dataset, then fine tune encoder 
part on your own, smaller datset and/or provide 
your own output (classification) layer

Latent space can also be used for visualization
(EDA, clustering), but there are better methods 
for that

Sebastian Raschka STAT 479: Deep Learning SS 2019 11

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.

VAN DER MAATEN AND HINTON

 0
1
2
3
4
5
6
7
8
9

(a) Visualization by t-SNE.

(b) Visualization by Sammon mapping.

Figure 2: Visualizations of 6,000 handwritten digits from the MNIST data set.

2590

Shown are 6000 images from MNIST projected in 2D

Note that MNIST has  
28 x 28 = 784 dimensions

(t-SNE is only meant for visualization not for preparing datasets!)

For details, see  
https://github.com/rasbt/
stat479-machine-learning-fs18/
blob/master/14_feat-extract/
14_feat-extract_slides.pdf

Another way to learn embeddings ...

https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/14_feat-extract/14_feat-extract_slides.pdf

Sebastian Raschka STAT 479: Deep Learning SS 2019 12

A Simple Autoencoder

Encoder Decoder

Reshape
28*28 => 784

Reshape
784 => 28*28

32 dim

fully connected layer
+ leaky relu
784 => 32

fully connected layer
+ sigmoid
32 => 784

original

reconstructed

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L15_autoencoder/code/ae-simple.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-simple.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-simple.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 13

A Convolutional Autoencoder

Encoder Decoder

original

reconstructed

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L15_autoencoder/code/ae-conv.ipynb

1 or more  
convolutional layers

1 or more 
 "de"convolutional layers

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-conv.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-conv.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 14

Transposed Convolution

• Allows us to increase the size of the output feature map
compared to the input feature map 

• Synonyms:

‣ often also (incorrectly) called "deconvolution" or
sometimes (mathematically, deconvolution is defined as
the inverse of convolution, which is different from
transposed convolutions)

‣ the term "unconv" is sometimes also used

‣ fractionally strided convolution is another term for that

Sebastian Raschka STAT 479: Deep Learning SS 2019 15

Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

14

input

output

Regular Convolution:

Figure 4.1: The transpose of convolving a 3⇥ 3 kernel over a 4⇥ 4 input using
unit strides (i.e., i = 4, k = 3, s = 1 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input padded with a 2⇥ 2 border of zeros using unit
strides (i.e., i0 = 2, k0 = k, s0 = 1 and p0 = 2).

Figure 4.2: The transpose of convolving a 4⇥4 kernel over a 5⇥5 input padded
with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5, k = 4, s = 1 and
p = 2). It is equivalent to convolving a 4 ⇥ 4 kernel over a 6 ⇥ 6 input padded
with a 1 ⇥ 1 border of zeros using unit strides (i.e., i0 = 6, k0 = k, s0 = 1 and
p0 = 1).

Figure 4.3: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1). It is
equivalent to convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5 input using half padding
and unit strides (i.e., i0 = 5, k0 = k, s0 = 1 and p0 = 1).

23

input

output

Transposed Convolution (emulated with direct convolution):

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

https://arxiv.org/abs/1603.07285

Sebastian Raschka STAT 479: Deep Learning SS 2019 16

output = s(n� 1) + k � 2p
<latexit sha1_base64="wDcSc+9jm0LLEge6NGheeZ1pTKs=">AAACBnicbVDLSgMxFM3UV62vUZciBItQkZaZKuhGKLpxWcE+oB1KJk3b0ExmSO6IZejKjb/ixoUibv0Gd/6NaTsLrR4IHM65l5tz/EhwDY7zZWUWFpeWV7KrubX1jc0te3unrsNYUVajoQhV0yeaCS5ZDTgI1owUI4EvWMMfXk38xh1TmofyFkYR8wLSl7zHKQEjdez9NrB7wAkOY4hiwOMLXZBF9+h4WCzjqGPnnZIzBf5L3JTkUYpqx/5sd0MaB0wCFUTrlutE4CVEAaeCjXPtWLOI0CHps5ahkgRMe8k0xhgfGqWLe6EyTwKeqj83EhJoPQp8MxkQGOh5byL+57Vi6J17CZcmIJN0dqgXCwwhnnSCu1wxCmJkCKGKm79iOiCKUDDN5UwJ7nzkv6ReLrknpfLNab5ymdaRRXvoABWQi85QBV2jKqohih7QE3pBr9aj9Wy9We+z0YyV7uyiX7A+vgGq3ZdN</latexit>

Transposed Convolution

?

Sebastian Raschka STAT 479: Deep Learning SS 2019 17

Transposed Convolution

strides: in transposed convolutions, we stride over the output;
hence, larger strides will result in larger outputs  
(opposite to regular convolutions)

Figure 4.4: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2). It is equivalent
to convolving a 3 ⇥ 3 kernel over a 7 ⇥ 7 input using unit strides (i.e., i0 = 7,
k0 = k, s0 = 1 and p0 = 0).

Figure 4.5: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
2⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input (with 1 zero inserted between inputs) padded
with a 2⇥ 2 border of zeros using unit strides (i.e., i0 = 2, ĩ0 = 3, k0 = k, s0 = 1
and p0 = 2).

Figure 4.6: The transpose of convolving a 3⇥3 kernel over a 5⇥5 input padded
with a 1 ⇥ 1 border of zeros using 2 ⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and
p = 1). It is equivalent to convolving a 3 ⇥ 3 kernel over a 3 ⇥ 3 input (with
1 zero inserted between inputs) padded with a 1⇥ 1 border of zeros using unit
strides (i.e., i0 = 3, ĩ0 = 5, k0 = k, s0 = 1 and p0 = 1).

25

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

You can think of it
as this:

https://arxiv.org/abs/1603.07285

Sebastian Raschka STAT 479: Deep Learning SS 2019 18

https://distill.pub/2016/deconv-checkerboard/

A good interactive article highlighting the dangers of transposed conv.

In short, it is recommended to replace transposed conv.
by upsampling (interpolation) followed by regular convolution

https://distill.pub/2016/deconv-checkerboard/

Sebastian Raschka STAT 479: Deep Learning SS 2019 19

A Convolutional Autoencoder with Nearest Neighbor
Interpolation

Encoder Decoder

original

reconstructed

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L15_autoencoder/code/ae-interpolate.ipynb

Convolutional layers
+ maxpooling

Convolutional layers
+ interpolation

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-interpolate.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L15_autoencoder/code/ae-interpolate.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 20

padding: in transposed convolutions, we pad the output; hence,
larger padding will result in smaller output maps  
(opposite to regular convolutions)

Transposed Convolution

Figure 4.4: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2). It is equivalent
to convolving a 3 ⇥ 3 kernel over a 7 ⇥ 7 input using unit strides (i.e., i0 = 7,
k0 = k, s0 = 1 and p0 = 0).

Figure 4.5: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
2⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input (with 1 zero inserted between inputs) padded
with a 2⇥ 2 border of zeros using unit strides (i.e., i0 = 2, ĩ0 = 3, k0 = k, s0 = 1
and p0 = 2).

Figure 4.6: The transpose of convolving a 3⇥3 kernel over a 5⇥5 input padded
with a 1 ⇥ 1 border of zeros using 2 ⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and
p = 1). It is equivalent to convolving a 3 ⇥ 3 kernel over a 3 ⇥ 3 input (with
1 zero inserted between inputs) padded with a 1⇥ 1 border of zeros using unit
strides (i.e., i0 = 3, ĩ0 = 5, k0 = k, s0 = 1 and p0 = 1).

25

for a 2x2 input (previous slide) the output would be 3x3

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

https://arxiv.org/abs/1603.07285

Sebastian Raschka STAT 479: Deep Learning SS 2019 21

Side-note: Often you will also see binary cross entropy 
used as a loss function instead of MSE

I find BCE for the autoencoder reconstruction loss problematic, 
but it does seem to work well in practice ... (because it is not symmetric)

Sebastian Raschka STAT 479: Deep Learning SS 2019 22

Encoder Decoder

Autoencoders and Dropout

Add dropout layers to force networks to 
learn redundant features

Sebastian Raschka STAT 479: Deep Learning SS 2019 23

Denoising Autoencoder

Add dropout after the input, or add noise to the input to learn 
to denoise images

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th
International Conference on Machine Learning (pp. 1096-1103). ACM.

Encoder Decoder

http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf

Sebastian Raschka STAT 479: Deep Learning SS 2019 24

Sparse Autoencoder
Add L1 penalty to the loss to learn sparse feature 
representations

Encoder Decoder

X

i

|Enci(x)|
<latexit sha1_base64="dBLHnt9Cv+htRbmzdT80rHfDM1A=">AAACBHicbVDLSsNAFJ3UV62vqMtuBotQNyWpgi6LIrisYB/QhDCZTtqhk0mYmYgl7cKNv+LGhSJu/Qh3/o2TNgttPXDhcM693HuPHzMqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oyygRmLRwxCLR9ZEkjHLSUlQx0o0FQaHPSMcfXWV+554ISSN+p8YxcUM04DSgGCkteWbZkUnoUTi55tijVSdEaugH6cP0BE48s2LVrBngMrFzUgE5mp755fQjnISEK8yQlD3bipWbIqEoZmRachJJYoRHaEB6mnIUEummsyem8FgrfRhEQhdXcKb+nkhRKOU49HVndqRc9DLxP6+XqODCTSmPE0U4ni8KEgZVBLNEYJ8KghUba4KwoPpWiIdIIKx0biUdgr348jJp12v2aa1+e1ZpXOZxFEEZHIEqsME5aIAb0AQtgMEjeAav4M14Ml6Md+Nj3low8plD8AfG5w9IBZfb</latexit>

L = ||x�Dec(Enc(x))||22 +
X

i

|Enci(x)|
<latexit sha1_base64="49PkuKLUhvj06IWg8JkPwQ/bE20=">AAACPXicbVDLSgMxFM34rPVVdekmWIQWscxUQTdC8QEuXFToC9o6ZNJMG5rJDElGLDP9MTf+gzt3blwo4tat6QOsrQcCJ+eey733OAGjUpnmizE3v7C4tJxYSa6urW9spra2K9IPBSZl7DNf1BwkCaOclBVVjNQCQZDnMFJ1uheDevWeCEl9XlK9gDQ91ObUpRgpLdmpUsNDqoMRi2768AzG8fDvuNFDHx7CS4IzVxxnfsVsNo7v8nYeHsCGDD2bwlgbbDppie1U2syZQ8BZYo1JGoxRtFPPjZaPQ49whRmSsm6ZgWpGSCiKGeknG6EkAcJd1CZ1TTnyiGxGw+v7cF8rLej6Qj+u4FCd7IiQJ2XPc7RzsKOcrg3E/2r1ULmnzYjyIFSE49EgN2RQ+XAQJWxRQbBiPU0QFlTvCnEHCYSVDjypQ7CmT54llXzOOsrlb4/ThfNxHAmwC/ZABljgBBTANSiCMsDgEbyCd/BhPBlvxqfxNbLOGeOeHfAHxvcPTTWuFQ==</latexit>

