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Face Recognition and Metric Learning



Siamese Networks
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Siamese Networks

Often used for "One-shot learning"

e Suppose you trained a Siamese network for verification tasks
e Now, suppose you have only 71 object per class

e You can compare any new object to any object based on
maximum similarity to your given images
(somewhat related to K-nearest neighbors)



Face Recognition:
Face ldentification vs Face Verification

A. Ildentification

Determine identity of an unknown person
1-to-n matching

(CelebA dataset)

dataset link: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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B. Verification
Verify claimed identity of a person
1-to-1 matching
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DeepFace

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.
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Calista Flockhart 0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d

Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

Hybrid between traditional methods and deep learning
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https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html

DeepFace

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.
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Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @255  @21X21
Given an image I, the representation (G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network with L layers, can be seen as a com-
position of functions géb. In our case, the representation is:
Fr( L C :
G(I) = g,7(95°(---95* (T'({,07))...)) with the net’s pa-
rameters ¢ = {C1,...,Fr} and 07 = {x94, P,7} as de- norma | |Zed

scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-/
sitivity to illumination changes: Each component of the fea-
ture vector 1s divided by its largest value across the training
set. This is then followed by Lo-normalization: f([) :=
G(I)/||G(I)||2 where G(I); = G(I);/ max(G;,e€) °.
Since we employ ReLLU activations, our system is not in-
variant to re-scaling of the image intensities. Without bi-

feature vectors

2See the supplementary material for more details.
3¢ = 0.05 in order to avoid division by a small number.
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DeepFace - Face Recognition

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.
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Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

Regular softmax ouput layer for classifying faces (face IDs)
optimized via cross-entropy loss.

Note they have 1-4k classes (they achieved a classification
accuracy of 793%).
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DeepFace - Face Verification

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.

REPRESENTATION

: : : : F7:
Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16 16x5x5x16 4096d

Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

4030d

Weighted chi-square distance + SVM classifier for binary
classification (predict whether two |mages depict the same person)

“(f1, f2) sz (frli] = fali])?/ (f1li] + f2li])

You may know this from other stats classes for comparing discrete probability distributions (histograms)

The weight is learned by the SVM.
(They achieved a classification accuracy is ~97%.)
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HW Clarification 1

64x16x16-dimensional

feature map

1) 5x5@64 convolution with stride=1
RelLU activation
2x2 max pooling with stride=2

kernel size > feature map issue

2) 5x5@192 convolution with stride=1
Rel.U activation
2x2 max pooling with stride=2

256x1x1-dimensional
feature map
4) 5x5@256 convolution with stride=1
ReLU activation 256-dimensional
\ 2x2 max pooling with stride=2 feature vector
32
N | s
\» : 8 pse |
Q 3|~ 1=k |14 / / 8) fully connected layer,
1 16 Q 1" Q -, 7 1 d dim.: 4096xnum_classes
% g k-7 Q‘t - Tk | —] SoftMax activation
8 4 1 2 Q 1 ~ ados i < hum_classes
N N
x 384 256 256 — —\ Iy
5x5 kernel 3 64 192 |

5) 5x5@256 convolution with stride=1 7) fully connected layer,

RelLU activation dim.: 4096x4096

2x2 max pooling with stride=2 RelLU activation

3x32x32 (CHW format)
input image 3) 3x3@384 convolution with stride=1 6)_ fully connected layer,
RelLU activation dim.: 409_6)(2,56
2x2 max pooling with stride=2 ReLU activation
Sebastian Raschka STAT 479: Deep Learning SS 2019
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HW Clarification 2

RelLU -- MaxPool Order

64x16x16-dimensional
feature map

2) 5x5@192 convolution with stride=1
BatchNorm
) , _ Dropout p=0.2
1) 5x5@64 convolution with stride=1 Rellll activation
BatchNorm 2x2 max pooling with stride=2
Dropout p=0.2
RelLU activation 4) 5x5@256 convolution with stride=1 256x1x1-dimensional
2x2 max pooling with stride=2 BatchNorm feature map
Dropout p=0.2
RelU activation 256-dimensional
- \ 2x2 max pooling with stride=2 feature vector
16 ’ Ry
> N 8 56 |/
3 . 1=k |4 > : // / 8). fully connected layer,
H o6 P Q_ xs) dim.: 4096xnum_classes
% g 4F-- Q‘t { h: - — SoftMax activation
8 4 1 5 1 ~ dos i <’ hum_classes
39 \\4 96 \
! pres 384 056 | 056 L L 7) fully connected layer,
5x5 kernel 64 dim.: 4096x4096
5) 5x5@256 convolution with stride=1 BatchNorm
BatchNorm ReLU activation
ut-p=0.2 Dropout p=0.5
3x32x32 (CHW format) 2x2 max pooling with stride=2
input image ReL.U activation ) 6) fully connected layer,
3) 3x3@384 convolution with stride=1 dim.: 4096x256
BatchNorm BatchNorm
RelLU activation
RelU activation Dropout p=0.5
2x2 max pooling with stride=2

Sebastian Raschka STAT 479: Deep Learning SS 2019 11



self.conv 2 = torch.nn.Conv2d(in_channels=4,

out channels=8,

kernel size=(3, 3),

stride=(1, 1),

padding=1) # (1(14-1) - 14 + 3) / 2

HW Clarification 3

w A TNLTAT — A TNLTACU

# 14x14x8 => 7x7x8
self.pool 2 = torch.nn.MaxPool2d(kernel size=(2, 2),

stride=(2, 2),
padding=0) # (2(7-1) - 14 + 2)

self.linear 1 = torch.nn.Linear(7*7*8, num classes)

def forward(self, x):

out
out
out

out
out
out

logits
probas
return

self.conv_1(x)
F.relu(out)
self.pool 1(out)

self.conv_2(out)
F.relu(out)
self.pool 2(out)

= self.linear 1(out.view(-1, 7*7%*8))

= F.softmax(logits, dim=1)

logits, probas

https: //github.com /rasbt /stat479-deep-learning-ss19/blob/master/L13 intro-cnn/code/cnn-with-diff-init/default.ipynb

Sebastian Raschka
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HW Clarification 3

From PyTorch Lecture (Lecture 6):

1)

class MultilayerPerceptron(toxch.nn.Module):

def _ init__ (self, num features, num classes):
super (MultilayerPerceptron, self). init ()

self.my_ network = torch.nn.Seguential(
torch.nn.Linear (num features, num hidden
torch.nn.RelLU(),

torch.nn.Linear(num hidden 1, num hidden
torch.nn.RelLU(),

torch.nn.Linear(num _hidden 2, num_classe
)

def forward(self, x):
laogits = self.my network(x)

probas = E.softmax(logits, dim=1)
return logits, pxebkas

Much more compact and clear, but "forward"
may be harder to debug if there are errors (we
cannot simply add breakpoints or insert
"print" statements

However, if you use Sequential, you can define
"hooks" to get intermediate outputs.
For example:

model.net

Sequential(
(0): Linear(in_features=784, out_features=128, bias=True)
(1): RelU(inplace)
(2): Linear(in_features=128, out_features=256, bias=True)
(3): RelU(inplace)
(4): Linear(in_features=256, out_features=10, bias=True)
)

If we want to get the output from the 2nd layer during the forward pass, we can register a hook as follows:

outputs = [
def hook(module, input, output):
outputs.append(output)

model.net(2).register_forward_hook(hook)

<torch.utils.hooks.RemovableHandle at Ox71659c6685¢c0>

Now, If we call the model on some inputs, it will save the intermediate results in the "outputs® list:

_ = model(features)

print(outputs)

(tensor([(0.5341, 1.08513, 2.3542, ..., 0.0000, 0.0000, 0.0000),
(0.0000, 0.6676, 0.6620, ..., 0.0000, 0.0000, 2.4056),
(1.1520, 0.0000, 0.0000, ..., 2.586@, 9.8992, 0.9642],

(0.0000, 0.1076, 0.0000, ..., 1.8367, 0.0000, 2.5203],

(0.5415, 0.0000, 0.0000, ..., 2.7968, 0.8244, 1.6335),

[1.8710, 0.9885, 3.0103, ..., 0.0000, 0.0000, 0.0000]],
device="cuda:3', grad_fn=<ThresholdBackwardl>)]
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In [3]:

HW Clarification 4

Model Settings

HHHBHBHFHBABABBARABABHRABABAABH
### NO NEED TO CHANGE THIS CELL
HHABHBHBHBBBABARBABABHBABABAAIBH

# Hyperparameters
RANDOM SEED = 1
LEARNING RATE = 0.001
BATCH_SIZE = 256
NUM_EPOCHS = 20

# Architecture
NUM_FEATURES = 32*%32
NUM CLASSES = 10

# Other
DEVICE = "cuda:0"

Sebastian Raschka STAT 479: Deep Learning

SS 2019
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HW Clarification 5

It seems that the model simply takes too much memory.
| tried various numbers but the memory seems to always run out at some point in training

Sebastian Raschka STAT 479: Deep Learning SS 2019
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FaceNet - Face Verification

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and
clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815-823. 2015.

Triplet
= Loss

E@ DEEP ARCHITECTURE | |L2 |

Batch

OZ—00Oomwm

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This 1s followed by the triplet loss
during training.


https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

FaceNet - Face Verification

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and
clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815-823. 2015.

Triplet
= Loss

E@ DEEP ARCHITECTURE | |L2|

Batch

OZ—0o0omwEm

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss

during training.
.{Neg‘ative

Negative m
Anchor

Anchor LEARNING

Positive Positive

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.
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Triplet Loss

Anchor  Positive Anchor Negative
Want encodings to be very similar Want encodings to be very different
(small distance) (large distance)

Sebastian Raschka STAT 479: Deep Learning SS 2019
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Triplet Loss

Anchor  Positive Anchor Negative
Want encodings to be very similar Want encodings to be very different
(small distance) (large distance)

d(A, P) < d(A, N)
1f(A) = F(P)|I5 < |If(A) = F(N)|3

Sebastian Raschka STAT 479: Deep Learning SS 2019
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Triplet Loss

Anchor  Positive Anchor Negative
Want encodings to be very similar Want encodings to be very different
(small distance) (large distance)

d(A P) + a < d(A, N)
|F(A) = F(P)15 +al< [1F(A) = F(V)II3

To make it a little harder
Sebastian Raschka STAT 479: Deep Learning SS 2019
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Triplet Loss

Anchor  Positive Anchor Negative
Want encodings to be very similar Want encodings to be very different
(small distance) (large distance)

d(A,P)+a <d(A,N)
1£(4) = F(P)B+a < I£(A) = (V)|
1£(4) ~ FP)IE + 0~ 1£(4) ~ F(V)I3 <0

Sebastian Raschka STAT 479: Deep Learning SS 2019 21
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Triplet Loss

Anchor  Positive Anchor Negative
Want encodings to be very similar Want encodings to be very different
(small distance) (large distance)

Bounded loss function for training:

L(A,P,N) =max (|| f(A) — f(P)ll3 + o —[|f(A) — f(N)]3,0)

Sebastian Raschka STAT 479: Deep Learning SS 2019



Triplet Loss

Anchor  Positive Anchor Negative
Want encodings to be very similar Want encodings to be very different
(small distance) (large distance)

In_practice: Selecting good pairs (those that are "hard")

is crucial during training

L(A,P,N) =max (|| f(A) — f(P)ll3 + o —[|f(A) — f(N)]3,0)

Sebastian Raschka STAT 479: Deep Learning SS 2019



Schroff, Florian, Dmitry Kalenichenko, and
James Philbin. "Facenet: A unified embedding for
face recognition and clustering." In Proceedings
of the IEEE conference on computer vision and
pattern recognition, pp. 815-823. 2015.

Architecture used

layer

size-in

size-out

kernel

param

FLPS

convl
pooll
rnorm1
conv2a
conv?2
rnorm?2
pool2
conv3a
conv3
pool3
conv4a
conv4
convda
conv>
conv6ba
convb
pool4
concat
fcl

fc2
fc7128
L2

220%x220x 3
110x110x 64
55X 55 % 64
55X HH %X 64
55X 55 %64
55x5H5x 192
5o X HH X192
28X 28 %192
28 X 28 %192
28 x 28 x 384
14x14x384
14%x14%x 384
14 x14%x256
14 x14%x256
14 x14%x256
14 x14%x256
14x14x256
TX7Tx256
TXTx256
1x32x128
1x32%x128
1x1x128

110x110x64
55X 55 %64
55X HdH X 64
55X HH % 64
5O X HH X192
55x5H5x 192
28X 28x192
28X 28 %192
28X 28 x 384
14x14x384
14x14x384
14 x14%x256
14x14%x256
14 x14%x256
14 x14%x256
14x14%x256
TX'T%x256
TXTX256
1x32x128
1x32x128
1x1x128
1x1x128

TXTX3,2
3x3x64, 2

1x1x64,1
3x3x64,1

3x3x192,2
1x1x192,1
3x3x192,1
3xX3Ix384, 2
1x1x384,1
3x3x384,1
1x1x256,1
3XxX3%x256, 1
1x1x%x256,1
3x3x256,1
3X3%x256, 2

maxout p=2
maxout p=2

9K

)

4K
111K

37K
664K

148K
885K
66K
590K
66K
590K
0
0
103M
34M
524K
0

115M

13M
335M

29M
521M

29M
173M
13M
116M
13M
116M

103M
34M
0.5M

total

140M

1.6B

Table 1.

NNI1.

This table show the structure of our

Zeiler&Fergus [22] based model with 1x1 convolutions in-

spired by [9].
in rows X cols X # filters.

The input and output sizes are described
The kernel is specified as

rows X cols, stride and the maxout [6] pooling size as p = 2.



https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
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FaceNet - Results

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition
and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815-823. 2015.

e al-rate :

Jpl(g) d V67 = #pixels | val-rate

. (0]
1,600 | 37.8%

20 81.4%
6,400 | 79.5%

30 83.9%
14,400 | 84.5%

50 85.5%
25,600 | 85.7%
70 86.1% 65,536 | 86.4%

90 86.5%

Table 4. Image Quality. The table on the left shows the effect on
the validation rate at 10E-3 precision with varying JPEG quality.
The one on the right shows how the 1mage size in pixels effects the
validation rate at 10E-3 precision. This experiment was done with
NNI1 on the first split of our test hold-out dataset.


https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
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FaceNet - Results

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition
and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

815-823. 2015.

#dims VAL
64 | 86.8% + 1.7
128 | 87.9% +£ 1.9
256 | 87.7% + 1.9
512 | 85.6% £ 2.0

Table 5. Embedding Dimensionality. This Table compares the
effect of the embedding dimensionality of our model NN1 on our
hold-out set from section 4.1. In addition to the VAL at 10E-3
we also show the standard error of the mean computed across five

splits.


https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
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FaceNet - Results

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition

and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815-823. 2015.

#training images | VAL

2,600,000 76.3%
26,000,000 85.1%
52,000,000 85.1%

260,000,000 36.2%

Table 6. Training Data Size. This table compares the performance
after 700h of training for a smaller model with 96x96 pixel inputs.
The model architecture 1s similar to NN2, but without the 5x5 con-
volutions in the Inception modules.
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FaceNet - Results

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition
and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

815-823. 2015.

#dims VAL
64 | 86.8% + 1.7
128 | 87.9% +£ 1.9
256 | 87.7% + 1.9
512 | 85.6% £ 2.0

Table 5. Embedding Dimensionality. This Table compares the
effect of the embedding dimensionality of our model NN1 on our
hold-out set from section 4.1. In addition to the VAL at 10E-3
we also show the standard error of the mean computed across five

splits.


https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
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L2

Batch
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=

Triplet
Loss

Figure 2. Model structure. Our netw 1 tch in-
put layer and a deep CNN followed by L2 normalization, which

results in the face embedding. This is followed by the triplet loss

during training.

Suppose we have 2 L2-normalized vectors:

Ixll2 = llyll2 =1

Ix —yl3
.

= 2—2XTy

=2 — 2cos(X,y)

(x-y) (x—y)
X X — 2XTy + yTy

where cos(x,y) =

XTy

x| - Iyl

The squared L2 distance is then proportional to the cosine similarity

e |—1,1]



Optional: Recent Triplet Loss Variants

(not required), only for those who are interested

e Cosine Similarity-based triplet loss:

Li, Chao, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying
Cao, Ajay Kannan, and Zhenyao Zhu. "Deep speaker: an end-to-end neural
speaker embedding system." arXiv preprint arXiv:1705.02304 (2017).

e Angular Loss:

Wang, Jian, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanging Lin. "Deep metric

learning with angular loss." In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2593-2601. 2017.

e Large margin cosine loss:

Wang, Hao, Yitong Wang, Zheng™ Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. "Cosface: Large margin cosine loss for deep face

recognition." In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5265-5274. 2018.
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Additional Concepts to Wrap Up the
Intro to Convolutional Neural Networks
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ConvNets and 3D Inputs

S Action
' Label

Temporal
Transition i

3D Temporal Transition Layer

Diba, Ali, Mohsen Fayyaz, Vivek Sharma, Amir Hossein Karami, Mohammad Mahdi Arzani, Rahman Yousefzadeh, and Luc
Van Gool. "Temporal 3d convnets: New architecture and transfer learning for video classification." arXiv preprint arXiv:
1711.08200 (2017).

Also very popular for Medical Imaging (MRI, CT scans ...)
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Cin =
Sum oger input
channels

ConvNets and 3D Inputs

Convolution Pooling

layer layer

N
Same concept as before except

that we now have 3D

images and kernels >-
X 6 Rnl XMoo XCin
W c le XM XCin XCout b - Rcout
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ConvNets and 3D Inputs

Usage is similar to Conv2d, except that we now have 3 dimensional
kernels

Conv3d

CLASS torxch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, -
dilation=1, groups=1, bias=True) [SOURCE]

Applies a 3D convolution over an input signal composed of several input planes.

https://pytorch.org/docs/stable/nn.html?highlight=conv3d+#ttorch.nn.functional.conv3d

import torch
import torch.nn as nn

m = nn.Conv3d(16, 33, 3, stride=2)

m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))
input = torch.randn(20, 16, 10, 50, 100)

output = m(input)

input.size()
torch.Size([20, 16, 10, 50, 100])
output.size()

torch.Size([20, 33, 8, 50, 99])
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ConvNets for Text with 1D Convolutions

We can think of text as image with width 1

(concatenated

word embeddings)

This s my great sentence



ConvNets for Text with 1D Convolutions

We can think of text as image with width 1

(concatenated

word embeddings’

This s my great sentence

https://pytorch.org/docs/stable/nn.html#convld

Conv1d

CLASS toxch.nn.Convld(in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True)

Applies a 1D convolution over an input signal composed of several input planes.
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Dilated Convolutions

i+2p—k—(k—1)(d—1)

S

A 2-dilated 2D convolution

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).
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CNNs for Text (with 2D Convolutions)

Good results have also been achieved by representing a sentence
as a matrix of word vectors and applying 2D convolutions
(where each filter uses a different kernel size)

wait [T 1 1 T T 1
gl B o mir=
g A S T
video . __ ...............................................................................
and B B %
do e o e e
n't .................................. ___ ..................................
rent | | | | | | e -
it =
I | I | I I |
n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
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Transfer Learning

e A technique that may be useful for your class projects

o Key idea:

4 Feature extraction layers may be generally useful

4 Use a pre-trained model (e.g., pretrained on ImageNet)
4 Freeze the weights: Only train last layer (or last few layers)

e Related approach: Finetuning, train a pre-trained network on your
smaller dataset



Transfer Learning

PyTorch implementation: https://github.com/rasbt/stat479-deep-learning-
ss19/blob/master/L13 intro-cnn/code/vggl6.ipynb

Visualization from
https://www.cs.toronto.edu/~frossard/post /vggl6/

112 x 128

212

I x1x4096 1 x1 x 1000
g I T, ;

T X
s

@ convolution+ReLU

["_l"] max pooling
| fully connected+RelLU

| softmax

¢
4 u’hd

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).
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Transfer Learning

PyTorch implementation: https://github.com/rasbt/stat479-deep-learning-
ss19/blob/master/L13 intro-cnn/code/vggl6.ipynb

224 x 324 x 3 224 x 224 x 64

Visualization from
https://www.cs.toronto.edu/~frossard /post /vggl6 /

':.?:;zfig; 12 x[112 x 128
l B Freeze

VN N -, - g
/. /4 /4 N IRx 512 (XTI xXxol2
32 14 x 14 x 512

L v-"';' et v —Aax., 1xX1x4096 1x]}x1000
‘ ] | ] £ .

4

Y

/ :T/

r_T convolution+RelLU
»' 1 Imax ':Hl‘l]i:l‘.'l

fully connected+ReLU
/VGG-16 L

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).

y
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Transfer Learning

https://pytorch.org/docs/stable/torchvision/models.html

Docs > torchvision > torchvision.models

TORCHVISION.MODELS

The models subpackage contains definitions for the following model architectures:

e AlexNet

e VGG

e ResNet

e SqueezeNet
e DenseNet

¢ Inceptionv3

e GoogleNet

You can construct a model with random weights by calling its constructor:

import torchvision.models as models
resnetl8 = models.resnetl8()
alexnet = models.alexnet()

vgglé = models.vggl6e()

squeezenet = models.squeezenetl_0()
densenet = models.densenetl61()
inception = models.inception_v3()
googlenet = models.googlenet()
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Transfer Learning

https://pytorch.org/docs/stable/torchvision /models.html

Docs > torchvision > torchvision.models

TORCHVISION.MODELS

The models subpackage contains definitions for the following model architectures:

e AlexNet

e VGG

e ResNet

e SqueezeNet
e DenseNet
¢ Inceptionv3

e GoogleNet

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB
images of shape (3 x Hx W), where H and W are expected to be at least 224. The images have to be loaded in to
a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std =

[0.229, ©0.224, 0.225] .You can use the following transform to normalize:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
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Transfer Learning Example

PyTorch example: https://github.com /rasbt/stat479-deep-learning-ss19/

blob/master/L13 intro-cnn/code/vggl6-transferlearning.ipynb
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Pre-Trained Models for Text

https://modelzoo.co/model/pytorch-nlp



https://modelzoo.co/model/pytorch-nlp

(Optional) News
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https://arxiv.org/abs/1904.01569

arXiv.org > c¢s > arXiv:1904.01569

Computer Science > Computer Vision and Pattern Recognition

Exploring Randomly Wired Neural Networks for Image Recognition

Saining Xie, Alexander Kirillov, Ross Girshick, Kaiming He
(Submitted on 2 Apr 2019 (v1), last revised 8 Apr 2019 (this version, v2))

Neural networks for image recognition have evolved through extensive manual design from simple chain-like mc
paths. The success of ResNets and DenseNets is due in large part to their innovative wiring plans. Now, neural ar
exploring the joint optimization of wiring and operation types, however, the space of possible wirings is constrai
despite being searched. In this paper, we explore a more diverse set of connectivity patterns through the lens of
this, we first define the concept of a stochastic network generator that encapsulates the entire network generatic
view of NAS and randomly wired networks. Then, we use three classical random graph models to generate rando
are surprising: several variants of these random generators yield network instances that have competitive accura
results suggest that new efforts focusing on designing better network generators may lead to new breakthrough:
spaces with more room for novel design.

Based on neural architecture search (NAS) and stochastic network generators
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https://arxiv.org/abs/1904.01569
Exploring Randomly Wired Neural Networks for Image Recognition

Saining Xie, Alexander Kirillov, Ross Girshick, Kaiming He
(Submitted on 2 Apr 2019 (v1), last revised 8 Apr 2019 (this version, v2))
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Based on neural architecture search (NAS) and stochastic network generators
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https://arxiv.org/abs/1904.01569

Exploring Randomly Wired Neural Networks for Image Recognition

Saining Xie, Alexander Kirillov, Ross Girshick, Kaiming He

(Submitted on 2 Apr 2019 (v1), last revised 8 Apr 2019 (this version, v2))

Also utilizes an
LSTM controller with
probabilistic behavior

(will discuss LSTMs in a different
context next lecture)

[;Li.lehCl] [.‘Lt\.\ll').'l]

Based on neural architecture search (NAS) and stochastic network generators
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Remaining Course Topics
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