Lecture 13

Introduction to

Convolutional Neural Networks
Part 1

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka

http://stat.wisc.edu/ sraschka/teaching /stat479-ss2019/

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

CNNs for Image Classification

/ output

Image Source:

twitter.com%2Fcats& psig=AOvVaw30 o-PCM- —_ —_ —_ p (y:cat)

K21DiIMAJQimQ4&ust=1553887775741551

/

Image Source: https://www.pinterest.com/pin/
244742560974520446

Sebastian Raschka STAT 479: Deep Learning SS 2019

Some Applications of CNNs

Label extension

K-1
€Z during training

[30] 5>
Age label 0
0| Extended label

L ResNet-34
- . gif cinv — 3@’(_3, o 7 Avgbool ||,
Predlctlng peop|e's age m e

Input image

(160,000 images from the
RenRen Social Network)

Figure 2. Illustration of the Co
the binary labels are obtained via Eq.

Table 1. Age prediction errors

Weight sharing
across K — 1tasks

e test sets without task importance weighting.

nt Rank Logits CNN (CORAL-CNN) used for age prediction. From the estimated probability values,
converted to the age label via Eq. (1).

Method Random MORPH-2 AFAD UTKFace CACD
Seed MAE RMSE MAE RMSE MAE RMSE MAE RMSE

0 3.40 4.88 3.98 5.55 6.57 9.16 6.18 8.86

1 3.39 4.87 4.00 5.57 6.24 8.69 6.10 8.79

CE-CNN 2 3.37 4.87 3.96 5.50 6.29 8.78 6.13 8.87
AVG £ SD | 339F£0.02 | 489 £0.01 | 3.98F£0.02 | 554 £0.04 | 637 £0.18 | 888 F 025 | 6.14 £ 0.04 | 884 £ 0.04

2.98 4.26 3.66 5.10 571 8.11 5.53 791

OR-CNN 1 2.98 4.26 3.69 5.13 5.80 8.12 5.53 7.98

(Niu et al., 2016) 2 2.96 4.20 3.68 5.14 5.71 8.11 5.49 7.89
AVG £ SD | 297 F£001 | 424 £0.03 | 368 £0.02 | 513 £0.02 | 574005 | 808F006 | 552F0.02 | 793 £ 0.05

2.68 3.75 3.49 4.82 5.46 7.61 5.56 7.80

CORAL-CNN 1 2.63 3.66 3.46 4.83 5.46 7.63 5.37 7.64

(ours) 2.61 3.64 3.52 491 5.48 7.63 5.25 7.53
AVG £SD | 264 £ 0.04 | 3.68F0.06 | 3.49 £ 0.03 | 485 L 0.05 | 547 £ 0.01 | 7.62 L 0.01 | 5.39 £ 0.16 | 7.66 T 0.14

Cao, Wenzhi, Vahid Mirjalili, and Sebastian Raschka. "Consistent Rank Logits for Ordinal Regression with
Convolutional Neural Networks." arXiv preprint arXiv:1901.07884 (2019).

Some Applications of CNNs

GDPR Compliance

-
: : W2 Keep identit
CléCb allu uic PCI LUl1uUCuU 11 Identlty p y

1 i \ information

e ementh1se Cross entr —Gonter- ®

Malo turbed) images. After p

{Fe\::éle ther trained by passing it ® §u ppress soft-
sub-networks: the auxili . biometric

.) Eth

iary face matcher (Fig. mreity= g

information
{Genmne as the two subnetworks, e e N

/Same-Gender Gender Prototypes
Prototype (Same/Neutral/Opposite)

Perturbed
Image

Subnetwork Il

Auxiliary
Gender
Predictor

Convolutional
Autoencoder

Subnetwork IlI

Auxiliary
Face
Matcher

VS.

Impostor sections.

Figure 1. Schematic representation of the semi-adversarial neu-

. i .) Encod
ral network architecture designed to derive perturbations that are (- REEl .‘
. 1 L]
able to confound gender classifiers while still allowing biomet- @4 @8 @12]1@256 @128, @1 X' yr
ric matchers to perform well. The overall network consists of 1 i | _E
three sub-components: a convolutional autoencoder (subnetwork < | ! ! S;t? Y @1
I), an auxiliary gender classifier (subnetwork II), and an auxiliary 5 i i i .»’ @- Xep
matcher (subnetwork III). ! ! '
() i x ' Pg,/ P/ Pop \
T fmmmmeee A = =
[X; PSM] Convolution D Avg. Pooling D

. Concatenated
2.2.1 Convolutional autoencoder channels Leaky ReLU|__| Nearest Neighb.| |

The architectnire of the convolutional antoencoder <uih-

Vahid Mirjalili, Sebastian Raschka, Anoop Namboodiri, and Arun Ross (2018) Semi-adversarial networks: Convolutional autoencoders for
imparting privacy to face images. Proc. of 11th IAPR International Conference on Biometrics (ICB 2018), Gold Coast, Australia.

Vahid Mirjalili, Sebastian Raschka, and Arun Ross (2018) Gender Privacy: An Ensemble of Semi Adversarial Networks for
Confounding Arbitrary Gender Classifiers. 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems

Sebastian Raschka STAT 479: Deep Learning SS 2019

Some Applications of CNNs

Dermatologist-level
. i classification of skin cancer

An artificial intelligence trained to classify images of skin lesions as benign lesions
or malignant skin cancers achieves the accuracy of board-certified dermatologists.

In this work, we pretrain a deep neural network at general object recognition, then fine-

tune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases.

FULL NATURE ARTICLE >

OPEN-ACCESS PDF

Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Sebastian Thrun.
"Dermatologist-level classification of skin cancer with deep neural networks." Nature 542, no. 7639 (2017): 115.

Sebastian Raschka STAT 479: Deep Learning SS 2019

Object Detection

/]

MORE VIDEOS \ |

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788).

Sebastian Raschka STAT 479: Deep Learning SS 2019 6

Object Segmentation

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [15], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask R-CNN." In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2961-2969. 2017.

Sebastian Raschka STAT 479: Deep Learning SS 2019 7

Why Image Classification is Hard

Different lighting, contrast, viewpoints, etc.

Image Source: Image Source: https://www.123rf.com/
twitter.com%2Fcats&psig=AOvVaw30 _o-PCM- photo 76714328 side-view-of-tabby-cat-face-over-
K21DiMAJQimQ4&ust=1553887775741551 white.html

Or even simple translation This is hard for traditional
N N methods like multi-layer
] 54] perceptrons, because
the prediction is

| | 5‘ basically based on a sum
20 20
of pixel intensities

0 5 1 15 2 0 5 1 15 20 %

Sebastian Raschka STAT 479: Deep Learning SS 2019 8

Traditional Approaches

a) Use hand-engineered features

Petal
Samples —~~
(instances, observations)

Sepal Sepal Petal
length width length

Setosa

2 49 3.0 1.4 0.2 Setosa

50 | 6.4 3.5 4.5 1.2 Versicolor 4

150 | 5.9 3.0 5.0 1.8 Virginica

\ Sepal
/ Class labels

(targets)

Features
(attributes, measurements, dimensions)

Sebastian Raschka STAT 479: Deep Learning SS 2019

Traditional Approaches

a) Use hand-engineered features

(a) Detected facial keypoints (b) Facial organ keypoints

Sasaki, K., Hashimoto, M., & Nagata, N. (2016). Person Invariant Classification of Subtle Facial Expressions Using Coded Movement Direction of
Keypoints. In Video Analytics. Face and Facial Expression Recognition and Audience Measurement (pp. 61-72). Springer, Cham.

Sebastian Raschka STAT 479: Deep Learning SS 2019

10

Traditional Approaches

b) Preprocess images (centering, cropping, etc.)

Image Source: https: //www.tokkoro.com /2827328-cat-animals-nature-feline-park-green-trees-grass.html

Sebastian Raschka STAT 479: Deep Learning SS 2019

11

https://www.tokkoro.com/2827328-cat-animals-nature-feline-park-green-trees-grass.html

Main Concepts Behind
Convolutional Neural Networks
Sparse-connectivity: A single element in the feature map is

connected to only a small patch of pixels. (This is very different

from connecting to the whole input image, in the case of multi-
layer perceptrons.)

Parameter-sharing: The same weights are used for different
patches of the input image.

Image Source: https: //www.tokkoro.com /2827328-cat-animals-nature-feline-park-green-trees-grass.html

https://www.tokkoro.com/2827328-cat-animals-nature-feline-park-green-trees-grass.html

Convolutional Neural Networks

Backpropagation Applied to Handwritten Zip Code Recognition 543
548 LeCun, Boser, Denker, Henderson, Howard, Hubbard, and Jackel

L0327 - G/,Llf &30 10 output units

fully connected

(_/MY (Y216 ~ 300 links
layer H3 oooooooo
‘ 30 hidden units fully connected
3—\ 8~\§ %?53 ~ 6000 links
layer H2
12 x 16=192 .. . LN .. .
:) H2.1 H2.
W’Z ’7(Iﬁ7é hidden units £ ~ 40,000 links
. from 12 kernels
: FA o 5x5x8
3’ S }‘6 0 ¢Q0C? layer H1 =W o
12 x 64 = 768 i
hidden units xM
L6119 1548673680326k E18¢ H1.1
£3£97202992997225100%¢701 ~20,000 links
308444459101 06 1 S+06 103563 E
tounlzsowszczoon‘mqee ;ron; 12 kernels
X

B9 1ADTLTIC8SSFIIIIRAT955460

Lol 7301871 129930971098

0109707597331973015517058 256 input units
[0755182SS(¥2614Y358090143

1787SN1(SSYC8559L0354605S

18255108635030¢75a0131401

Y. LeCup, B. Bpser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel: Backpropagation Applied to
Handwritten Zip Code Recognition, Neural Computation, 1(4):541-551, Winter 1989.

http://www.ics.uci.edu/~welling/teaching/273ASpring09/lecun-89e.pdf
http://www.ics.uci.edu/~welling/teaching/273ASpring09/lecun-89e.pdf

Convolutional Neural Networks

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5
INPUT 6@28x28 p

32x32 S2: f. maps
6@14x14 r

Co:layer e jayer OUTPUT

™ 120 VA 10
Lr

=

— |
Full conAection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition,

Proceedings of IEEE, 86(11):2278-2324, 1998.

Sebastian Raschka STAT 479: Deep Learning SS 2019

14

http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

Convolutional Neural Networks

PROC. OF THE IEEE, NOVEMBER 1998 Size of the resu|ting |ayer5 7
Number of feature detectors ~
Iy C3: f. maps 1¢€ @10x10 ;
NPT Slfeaturo mape - fmaps16@5x§5 | Multi-layer perceptron
6@14x14 120 10 layer ouTPUT

Subsampling

Convolutions

Fig. 2. Archit

whose weights are constrained to be identical.

\ 4
nowadays called

"Feature delectors" (weight matrices)
that are being reused ("weight sharing")
=> also called "kernel" or "filter"

o

"pooling"

e "

Convolutions

FuII conﬁectlon Gaussmn connections
Subsamplmg Full connectlon

ctjare of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units

\/
basically a fully-connected
layer + MSE loss
(nowadays better to use
fc-layer + softmax

+ Cross entropy

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition,

Proceedings of IEEE, 86(11):2278-2324, 1998.

Sebastian Raschka

STAT 479: Deep Learning

SS 2019 15

http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

Weight Sharing

A "feature detector" (kernel) slides over the inputs to generate
a feature map

The pixels are . 15

9
E :ung
j=1

referred to

10 A

as "receptive field"

15 A

20 -

s "feature map"

0 5 W 15 20 25

Rationale: A feature detector that works well in one region
may also work well in another region

Plus, it is a nice reduction in parameters to fit

Weight Sharing

A "feature detector" (kernel) slides over the inputs to generate
a feature map

10 A

15 A

20 -

25 4

Weight Sharing

A "feature detector" (kernel) slides over the inputs to generate
a feature map

10 A

15 A

20 -

25 4

10 A

15 A

20 -

25 -

10 A

15 A

20 -

25 -

10 A

15 A

20 -

25 -

5 10 15

0 5

]

0 25 9

Sebastian Raschka

maps

STAT 479: Deep Learning

Multiple "feature
detectors" (kernels) are used
to create multiple feature

SS 2019

19

Size Before and After Convolutions

Feature map size: input width kernel width
/ - padding
W — K+ 2P
O = -1

S

/ |

output width stride

Hidden Layers

PROC. OF THE IEEE, NOVEMBER 1998 7

C1: feature ma
6@28x28

INPUT

o232 C8:layer Fg; jayer OUTPUT

74 |

Full conAection Gaussian connections
Full connection

Convolutiog

Fig. 2. Architecture of LeNet-5, a\Cop#olutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained t& be identical.

Each "bunch" of feature maps represents one
hidden layer in the neural network.

Counting the FC layers, this network has 5 layers

Sebastian Raschka STAT 479: Deep Learning SS 2019

21

Hidden Layers

PROC. OF THE IEEE, NOVEMBER 1998

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5
INPUT 6@28x28 p

32x32 S2: f. maps C5: layer F6 layer OUTPUT

R \\

Full conr#echon Gaussmn connections
Convolutions Subsampling Convolutlons Subsampllng Full connectlon

S~

"Automatic feature extractor" "Regular classifier"

Sebastian Raschka STAT 479: Deep Learning SS 2019

Kernel Dimensions

10

15 4

20 -

25

0o 5 10 15 20 2
a.shape
(1, 28, 28)
import torch

conv = torch.nn.Conv2d(in_channels=1,
out_channels=8,

kernel_size=(5, 5),

stride=(1, 1))

conv.weight.size()

torch.Size([8, 1, 5, 5])

conv.bias.size()

torch.Size([8])

Sebastian Raschka

For a grayscale image with a

5x5 feature detector (kernel),

we have the following dimensions
(number of parameters to learn)

What do you think is the output size
for this 28x28 image?

STAT 479: Deep Learning SS 2019

23

Backpropagation in CNNs

Same overall concept as before: Multivariable chain rule,

but now with an additional weight sharing constraint

Remember Lecture 6? Graph with Weight Sharing

o1(21) = a1

9o 7
80,1 @ l
80 E(y)o) —
0o — |
wl /'0'3(04,@2) = 0
~ ao
Jaz
aw]_ 0'2(21) — a9

Upper path

ﬁ_@l 8O.8a1+al.60.8a2 o |
dwi Oo Oa; Owi = 0o Oas Ows (multivariable chain rule)

Lower path

Backpropagation in CNNs

Same overall concept as before: Multivariable chain rule,

but now with an additional weight sharing constraint

10 -

15 A

20 -

25 1

Due to weight sharing:w{ = wo

oy

[—

—

Optional averaging

weight update: 1‘/ Y Y

CNNs and Translation/Rotation/Scale Invariance

Note that CNNs are not really invariant to scale, rotation,
translation, etc.

The activations are still

dependent on the location, etc.

Pooling Layers Can Help With Local Invariance

Pooling (P,,,)
r A S - N
2 1 7\”\\\2 o Max-pooling Mean-pooling
ol 0] 3 “
L8
o320 1]1
6|2 |5(3|0]3
(31602 1[0 iy

Downside: Information is lost.
May not matter for classification, but applications where relative position is
important (like face recognition)

In practice for CNNs: some image preprocessing still recommended
Sebastian Raschka STAT 479: Deep Learning SS 2019

Pooling Layers Can Help With Local Invariance

Pooling (P,,,)
r - F 3
2|7 7\"‘1 \2 o Max-pooling Mean-pooling
o0]3 [
L1 7]8
0]3]2 1
62|05 0
L2610 217110 strido=(3, 3)

Note that typical pooling layers do not have any learnable parameters

Downside: Information is lost.
May not matter for classification, but applications where relative position is
important (like face recognition)

In practice for CNNs: some image preprocessing still recommended
Sebastian Raschka STAT 479: Deep Learning SS 2019 20

Main Breakthrough for CNNs:
AlexNet & ImageNet

al N\ | EN EAN -1 >
5 \“x\\ T‘\: \::::\‘ /;j/ 3 |- - A :: -
| N EAVSII= S ' 3| N\
48 192 192 128 2048 2 ense
o 7 128 o T
N AN E RN 13 \ 13
N EMY 3\
5- >>>>>>>>>> 3," ENRR 3 LA R R
- 13 I3) dense | |dense
' 27 NI 3| \ AP 13
55 3 o \| 1000
N 192 192 128 Max] H
; 2048 2048
Stride Max 128 Max pooling
Uof 4 pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896—64,896—43,264—
4096-4096-1000.

Krizhevsky, A., Sutskever, |., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems (pp. 1097-1105).

Main Breakthrough for CNNs:
AlexNet & ImageNet

Figure 3: 96 convolutional kernels of size
11x11 x 3 learned by the first convolutional
layer on the 224 X224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

~ container ship motor scooter

mite container ship motor scooter =
black widow lifeboat go-kart jaguar | pes
cockroach amphibian moped cheetah

tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

grille mushroom cherry Madagascar cat

convertible | agaric dalmatiah squirrel monkey

grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems (pp. 1097-1105).

Sebastian Raschka

STAT 479: Deep Learning SS 2019

31

T et U5 .
LT e S
R
\
N .
s XA
s N
. L lgh .
RN \
-~ X - - Ve
i i \ 5 .
-
.
> 3 : » N

mite

Main Breakthrough for CNNs:
AlexNet & ImageNet

container ship

motor scooter

The ImageNet set that was used

' has ~1.2 million

% images and 1000 classes

mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped ’]_' cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
y ’ . ” » Sy r

¢ -
grille mushroom cherry Madagascar cat
~ convertible agaric dalmatiah squirrel monkey
| grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Accuracy is measured as top-b
performance:

Correct prediction if the true
label matches one of the top 5
predictions of the model

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems (pp. 1097-1105).

Sebastian Raschka

STAT 479: Deep Learning

SS 2019 32

Main Breakthrough for CNNs:
AlexNet & ImageNet

A ')'-'i vl
mite container ship motor scooter

mite container ship motoér scooter ledpard
black widow lifeboat go-kart jaguar
cockroach ’_‘ amphibian moped ’]_I cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
2 " . ” ‘ T
o =8 . b
> d‘ 'y
grille mushroom cherry Madagascar cat
~__convertible agaric dalmatiah squirrel monkey
| grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Note that the actual network

skesg inputs were still 224x224 images
E=2=% (random crops from

downsampled 256x256 images)

224x224 is still a good/
reasonable size today
(224*224*3 = 150,528 features)

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems (pp. 1097-1105).

Sebastian Raschka

STAT 479: Deep Learning

SS 2019 33

Common CNN Architectures

80 1

75 1

) J_I_I_II ‘
50 -

$e‘ N AN e A A0 A9 O AQ A5F A2 B
\e & \,e \«, G 6 &6 &6 e\, e’& ,('\0 ,00(\
%& 600 ee? NN CN ee < Q(\C Y

~
o

)]
6]

Top-1 accuracy [%]

)]
o

Figure 1: Topl vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Inception-v4
80 1
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
751 ResNet-101
’ ResNet-34
9
270 - ResNet-18
are
® GoogleNet
S ENet
&)
S 65
—
3 © BN-NIN
F 60 5M 35M 65M - 95M - 125M - 155M
BN-AlexNet
55 1 AlexNet
50 T T T T T r r T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Figure 2: Topl vs. operations, size < parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5 x 10° to 155 x 10° params. Both
these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical
applications. arXiv preprint arXiv:16056.07678.

Convolutions with Color Channels

Convolution

Pooling
layer layer
z \'\,
\,ﬁ/ cig%) >
cin =
Sum oger input
channels
werne'
\\'m‘ﬂ“z
C
" _/
Y

Image dimension: X € R™1*"2XCn jn NWHC format,
CUDA & PyTorch use NCWH

Sebastian Raschka STAT 479: Deep Learning SS 2019

35

Convolutions with Color Channels

Convolution

Pooling
layer layer
z \'\,
\d cfi:‘) 5
cin =
Sum oger input
channels
Ker®
&\'m‘ﬂ“g
Cl
" -
Y

m,xm,x3x5

Image dimensions: X € [R™1 "2 XCin

Kernel dimensions: W € R"™1XM2XCin XCout]y ¢ [RCout

Sebastian Raschka STAT 479: Deep Learning SS 2019 36

Convolutions with Color Channels

out

Sum oger input
nnnnnnnn

Number of parameters: Assume 5x5 kernel:

mi1 X Mo X3 XH-+H DX Hx3IxH+5H =380

Convolutions with Color Channels

out

Sum oger input
nnnnnnnn

If we use a CNN:

Number of parameters:

mlxm2><3><5+5

If we use a fully connected layer:

Number of parameters:
(n1 X ng X 3) X (N1 X ng X 5) 4+ (ng X ng x5)

(N1 X n2)* X3 x54+n; Xxng x5

Assume "same" padding
(more on padding later),

such that the hidden layer has
the same height and width as
the original images

Assume 128x128 images and
5x5 kernel:

DX HX3IXH+H=3K80

(128 x 128)* x 3 x 54 128 x 128 x 5
= 4,026,613, 760

What a CNN Can See

Simple example: vertical edge detector

conv.weight[@, @, :, :]1 = torch.tensor([[1, 0, -11,
[11 @; _1] ’
[1, 0, -1]1]).float()

t = torch.tensor([

(From classical computer vision research)

[6., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.1,
[6., 0., 0., 0., 0., ©0., 1., 1., 1., 1., 1.1,
[0., 0., 0., 0., 0., ©0., 1., 1., 1., 1., 1.1,
[0., 0., 0., 0., 0., O0., 1., 1., 1., 1., 1.1,
(0., 0., 0., 0., 0., O0., 1., 1., 1., 1., 1.1,
(0., 0., 0., 0., 0., ©0., 1., 1., 1., 1., 1.],
[6., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.1,
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.1, tt = torch.zeros([1, 1] + list(t.size()))
1) tt[o, 0, :, :1 =t
after = conv(tt)
plt.imshow(t, cmap='gray'); plt.imshow(after[@, @, :, :]l.detach().numpy(), cmap='gray');
0 0 -
1
1 -4
2
3 21
4 3<
5
4 4
P
7 31

What a CNN Can See

Simple example: vertical edge detector

conv = torch.nn.Conv2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3))

conv.weight.size()

torch.Size([1, 1, 3, 31])

conv.weight[@, @, :, :] = torch.tensor([[1, 0, -1],

[1, o0, -1],

[1, 9, -1]]).float()
torch.tensor([0.]).float()

conv.bias[0]

images_after = conv(images)

plt.imshow(images[5, @], cmap='gray');

0

10
15
20

25

0 b 10 15 20 25

plt.imshow(images_after[5, 0].detach().numpy() , cmap='gray');

0

10

15

20

25

0 5 10 15 20 25

Sebastian Raschka STAT 479: Deep Learning SS 2019 40

What a CNN Can See

Simple example: horizontal edge detector

conv.weight[@, @, :, :] = torch.tensor([[1, 1, 1],
[0, 0, 0],
[-1, -1, -1]]).float()
conv.bias[0] = torch.tensor([0.]).float()

images_after2 = conv(images)

plt.imshow(images_after2[5, 0].detach().numpy() , cmap='gray');

A CNN can learn whatever it finds
best based on optimizing the objective
(e.g., minimizing a particular loss

to achieve good classification accuracy)

0 5 10 15 20 25

Sebastian Raschka STAT 479: Deep Learning SS 2019

41

What a CNN Can See

Which patterns from the training set activate the feature map?

Fig. 4. Evolution of a randomly chosen subset of model features through training.
Each layer’s features are displayed in a different block. Within each block, we show
a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64]. The visualiza-
tion shows the strongest activation (across all training examples) for a given feature
map, projected down to pixel space using our deconvnet approach. Color contrast is
artificially enhanced and the figure is best viewed in electronic form.

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

Method: backpropagate strong activation signals in hidden layers to the input images,
then apply "unpooling" to map the values to the original pixel space for

visualization
Sebastian Raschka STAT 479: Deep Learning SS 2019 42

What a CNN Can See

Which patterns from the training set activate the feature map?

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

14/7% T
(] !y g ""*"’!2}—“!

M = =
wﬁ T

Sebastian Raschka STAT 479: Deep Learning SS 2019 43

What a CNN Can See

Which patterns from the training set activate the feature map?

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

Sebastian Raschka STAT 479: Deep Learning SS 2019

44

What a CNN Can See

Which patterns from the training set activate the feature map?

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

Sebastian Raschka STAT 479: Deep Learning SS 2019

45

End of part 1

