Lecture 12

Common Optimization Algorithms

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka
http://stat.wisc.edu/ sraschka/teaching /stat479-ss2019/

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Overview: Additional Tricks for
Neural Network Training (Part 2/2)

Part 1 (before Spring break)

® Input Normalization (BatchNorm, InstanceNorm, GroupNorm,
LayerNorm)

® Weight Initialization (Xavier, Kaiming He)

Part 2 (this lecture)

® Learning Rate Decay
® Momentum Learning

® Adaptive Learning

Overview: Additional Tricks for
Neural Network Training (Part 2/2)

Part 1 (before Spring break)

® Input Normalization (BatchNorm, InstanceNorm, GroupNorm,
LayerNorm)

® Weight Initialization (Xavier, Kaiming He)

Part 2 (this lecture)
® Learning Rate Decay (Modifications of the 1st order SGD optimization
e Momentum Learning algorithm; 2nd order methods are rarely used in DL)

® Adaptive Learning

Sebastian Raschka STAT 479: Deep Learning SS 2019

Minibatch Learning Recap

e Minibatch learning is a form of
stochastic gradient descent

e Each minibatch can be considered a
sample drawn from the training set

Wi (where the training set is in turn a

sample drawn from the population)

605“’ M(m{w‘um

e Hence, the gradient is noisier

—) e A noisy gradient can be

4 good: chance to escape local minima

4 bad: can lead to extensive oscillation

e Main advantage: Convergence speed,
because it offers to opportunities for
parallelism (do you recall what these are?)

Minibatch Learning Recap

e Minibatch learning is a form of
stochastic gradient descent

/\
i e Each minibatch can be considered a
Lost Miwimar sample drawn from the training set
Wi (where the training set is in turn a
sample drawn from the population)
e Hence, the gradient is noisier
_) e A noisy gradient can be
W,
4 good: chance to escape local minima
4 bad: can lead to extensive oscillation
e Main advantage: Convergence speed, e Note that second order methods that
because it offers to opportunities for take e.g., gradient curvature into account
parallelism (do you recall what these are?) usually don't work so well in practice

and are not often used/recommended in DL

5

Nice Library & Visualization Tool

https://vis.ensmallen.org

FUNCTION P OPTIMIZER: SGD H|gh Lea rning Rate

StepSize - —— 01 S BatchSize P— 1

,‘ Iterations Y —— 100 ¢

Tolerance s 0.0001 ¢

PRV N el

The defaults here are not necessarily
good for the given problem, so it is
suggested that the values used be
tailored to the task at hand. (Use the
mouse to drag and to choose the initial
parameter.) The global minimum and
optimizer minimum can be found on the

left.

-
-
S

Vyov vy Yy

L T S

—] Show Marker

A

s 7 P

Booth - Coordinates: (6.00, 14.00)
FUNCTION P OPTIMIZER: SGD

Global Minimum: (1, 3)

Optimizer Minimum: (0.997, 2.996) d
& p : StepSize

D ———— 0.01 s BatchSize P—— 1(4

Iterations — —— 100
Tolerance O—— 0.0001 ¢

The defaults here are not necessarily
good for the given problem, so it is

suggested that the values used be
tailored to the task at hand. (Use the e A 2N ¢
mouse to drag and to choose the initial : = - . N
parameter.) The global minimum and ~ - X -
optimizer minimum can be found on the : b AV
left. -~ ~ N
. - ¢
-~ - < AT
—] Show Marker o QQ“ s - P =
P ' 7 P . 7 -
/‘)f &Q"* - - ¢ v
Booth - Coordinates: (6.00, 14.00) PIN A ““ NS
Global Minimum: (1, 3) et “ IS 7
P RN ™
imi ini . Vo s g ¢
Optimizer Minimum: (1.135, 2.865) \ N Shvi o o F
§\ A R R A

Sebastian Raschka STAT 479: Deep Learning SS 2019

https://vis.ensmallen.org

Practical Tip for Minibatch Use

e Reasonable minibatch sizes are usually: 32, 64, 128, 256, 512, 1024 (in the last
lecture, we discussed why powers of 2 are a common convention)

e Usually, you can choose a batch size that is as large as your GPU memory allows
(matrix-multiplication and the size of fully-connected layers are usually the bottleneck)

e Practical tip: usually, it is a good idea to also make the batch size proportional to the
number of classes in the dataset

All samples (n = 150)
0.6

0.5
304
S 03 Setosa
o — Virginica
() .
=02 Versicolor
0.1

0.0

Training samples (n = 100) Test samples (n = 50)

e o ©
5 U0 o

Frequency
o o o
N w

o
il

o
o

45 50 55 60 65 7.0 7.5 8.0 45 50 55 60 65 7.0 7.5 8.0
Sepal Width [cm] Sepal Width [cm] Raschka, S. (2018). Model evaluation, model selection, and

algorithm selection in machine learning. arXiv preprint
Figure 1: Distribution of Iris flower classes upon random subsampling into training and test sets. arXiv:1811.12808.

Learning Rate Decay

e Batch effects -- minibatches are samples of the training set,
hence minibatch loss and gradients are approximations

e Hence, we usually get oscillations

e To dampen oscillations towards the end of the training, we can decay the
learning rate

LO 3¢ %&//

Learning Rate Decay

e Batch effects -- minibatches are samples of the training set,
hence minibatch loss and gradients are approximations

e Hence, we usually get oscillations

e To dampen oscillations towards the end of the training, we can decay the

learning rate | |
Danger of learning rate is

| - A owen .
MOWM‘”’““Z) wegh e K§ to decrease the learning rate too early

/ D< Wblo(p_-"ra!im'w& sek /OS_S

Practical tip: try to train the model
without learning rate decay first,

Loss then add it later

You can also use the validation
performance (e.g., accuracy) to
judge whether Ir decay is useful
(as opposed to using the training loss)

Sebastian Raschka STAT 479: Deep Learning SS 2019 9

Learning Rate Decay

Most common variants for learning rate decay:

1) Exponential Decay:

=o€ "

where £k is the decay rate

Learning rate

0.5 1

0.4 1

o
w

o
N

0.1 A

0.0 -

—— decay rate 0.05

decay rate 0.01

—— decay rate 0.1

20

40 60
Iteration (usually: epoch)

80 100

10

Learning Rate Decay

Most common variants for learning rate decay:

2) Halving the learning rate:

Mt i= Mp=1/2
0.5 - —— decay rate 0.05
decay rate 0.01
—— decay rate 0.1
3) Inverse decay: o
S 203
t 1= e
1+ k-t
— 0.2
0.1 -

0 20 40 60 80 100
Ilteration (usually: epoch)

Learning Rate Decay

There are many, many more

E.g., Cyclical Learning Rate

Smith, Leslie N. “Cyclical learning rates for training neural networks.” Applications of Computer
Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017.

Maximum bound
(max_Ir)

Minimum bound

< > (base_Ir)
stepsize

Figure 2. Triangular learning rate policy. The blue lines represent
learning rate values changing between bounds. The input parame-
ter stepsize is the number of iterations in half a cycle.

(which, I found, didn't work well at all in practice, unfortunately -- at least in my case)

12

https://ieeexplore.ieee.org/abstract/document/7926641/

A.M. TURING AWARD WINNERS BY..

ALPHABETICAL LISTING

Geoffrey E Hinton

YEAR OF THE AWARD RESEARCH SUBJECT

FATHERS OF THE DEEP LEARNING REVOLUTION
RECEIVE ACM A.M. TURING AWARD

Bengio, Hinton, and LeCun Ushered in Major
Breakthroughs in Artificial Intelligence

ACM named Yoshua Bengio, Geoffrey Hinton, and Yann

LeCun recipients of the 2018 ACM A.M. Turing Award for
conceptual and engineering breakthroughs that have made deep
neural networks a critical component of computing. Bengio is
Professor at the University of Montreal and Scientific Director at
Mila, Quebec’s Artificial Intelligence Institute; Hinton is VP and
Engineering Fellow of Google, Chief Scientific Adviser of The Vector
Institute, and University Professor Emeritus at the University of
Toronto; and LeCun is Professor at New York University and VP and
Chief AI Scientist at Facebook.

Working independently and together, Hinton, LeCun and Bengio
developed conceptual foundations for the field, identified surprising
phenomena through experiments, and contributed engineering
advances that demonstrated the practical advantages of deep neural
networks. In recent years, deep learning methods have been
responsible for astonishing breakthroughs in computer vision,
speech recognition, natural language processing, and robotics—
among other applications.

While the use of artificial neural networks as a tool to help
computers recognize patterns and simulate human intelligence had
been introduced in the 1980s, by the early 2000s, LeCun, Hinton
and Bengio were among a small group who remained committed to
this approach. Though their efforts to rekindle the Al community’s
interest in neural networks were initially met with skepticism, their
ideas recently resulted in major technological advances, and their
methodology is now the dominant paradigm in the field.

Some Live News

The Turing Award is
generally recognized as
the highest distinction
iIn computer science and
the "Nobel Prize of
computing". ... Since
2014, the award has

peen accompanied by a
orize of US $1 million

Sebastian Raschka STAT 479: Deep Learning SS 2019

13

Learning Rate Decay in PyTorch

Option 1. Just call your own function at the end of each epoch:

def adjust learning rate(optimizer, epoch, initial 1lr, decay rate):
"""Exponential decay every 10 epochs
if not epoch % 10:

lr = initial 1r * torch.exp(-decay rate*epoch)
for param group in optimizer.param groups:
param group['lr'] = 1r

Sebastian Raschka STAT 479: Deep Learning SS 2019 14

Learning Rate Decay in PyTorch

Option 2. Use one of the built-in tools in PyTorch: (many more available)
(Here, the most generic version.)

CLASS torxch.optim.lxr_scheduler.LambdaLR(optimizer, 1xr_ lambda, last_epoch=-1) [SOURCE]

Sets the learning rate of each parameter group to the initial Ir times a given function. When last_epoch=-1, sets initial Ir as Ir.

Parameters: e optimizer (Optimizer) - Wrapped optimizer.
¢ Ir_lambda (function or list) - A function which computes a multiplicative factor given an integer
parameter epoch, or a list of such functions, one for each group in optimizer.param_groups.

¢ last_epoch (/nt) - The index of last epoch. Default: -1.

Example

>>> # Assuming optimizer has two groups.

>>> lambdal = lambda epoch: epoch // 30

>>> lambda2 = lambda epoch: 0.95 %% epoch

>>> scheduler = LambdalLR(optimizer, lr_lambda=[lambdal, lambda2])
>>> for epoch in range(100):

>>> scheduler.step()
>>> train(...)
>>> validate(...)

Source: https://pytorch.org/docs/stable/optim.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 15

https://pytorch.org/docs/stable/optim.html

Learning Rate Decay in PyTorch

HHHLAHHH A H B HHHAHRAHHH AR A AL A A
Model Initialization

i

Example, part 1/2

torch.manual seed(RANDOM SEED)
model = MLP(num features=28%*28,
num hidden=100,
num classes=10)

model = model.to(DEVICE)

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.1)

i
LEARNING RATE SCHEDULER

HHHHHFHHHHHHHHHH AT AHFHAAH AT AT A

scheduler = torch.optim.lr scheduler.ExponentiallR(optimizer,
gamma=0.1,
last epoch=-1)

https://github.com /rasbt/stat479-deep-learning-ss19/tree/master/L12 optim/Ir _scheduler and saving models.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 16

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb

Learning Rate Decay in PyTorch

for epoch in range(5):

model.train()

for batch idx, (features, targets) in enumerate(train loader): Examplev part 2/2
features = features.view(-1, 28+*28).to(DEVICE)
targets = targets.to(DEVICE)

FORWARD AND BACK PROP
logits, probas = model(features)

#cost = F.nll loss(torch.log(probas), targets)
cost = F.cross_entropy(logits, targets)
optimizer.zero grad()

cost.backward()
minibatch cost.append(cost)
UPDATE MODEL PARAMETERS

optimizer.step()

LOGGING
if not batch idx % 50:
print ('Epoch: %03d/%03d | Batch %03d/%03d | Cost: %.4f'
% (epoch+1, NUM EPOCHS, batch idx,
len(train loader), cost))

HHHHAAAAAAHHHHHHHFAAAHHHHH
Update Learning Rate
scheduler.step() # don't have to do it every epoch!

HHHHFHHHHHHHHTHAHAHHAHHHHAH

model.eval ()

https://github.com /rasbt/stat479-deep-learning-ss19/tree/master/L12 optim/Ir _scheduler and saving models.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 17

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb

Saving Models in PyTorch
Save Model

e R R Learning rate schedulers
torch.save(model.state dict(), './my model 2epochs.pt')
torch.save(optimizer.state dict(), './my optimizer 2epochs.pt’) have the advantage that we

torch.save(scheduler.state dict(), './my scheduler 2epochs.pt’) .]
can also simply save their

state for reuse

Load Model

(e.g., saving and continuing

model = MLP(num features=28*28, training |ater)
num hidden=100,
num classes=10)

model.load state dict(torch.load('./my model 2epochs.pt'))
model = model.to(DEVICE)

for this particular optimizer not necessary, as it doesn’'t have a state
but good practice, so you don't forget it when using other optimizers

later

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

optimizer.load state dict(torch.load('./my optimizer 2epochs.pt'))

scheduler = torch.optim.lr scheduler.ExponentialLR(optimizer,
gamma=0.1,
last epoch=-1)
scheduler.load state dict(torch.load('./my scheduler 2epochs.pt'))

model.train()

https://github.com /rasbt/stat479-deep-learning-ss19/tree/master/L12 optim/Ir _scheduler and saving models.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 18

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb

Weight Initialization Experiments (Last-lecture-follow-up)

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L13 intro-cnn/code/cnn-with-diff-init

Uniform: Test accuracy 97.63% Normal: Test accuracy 97.76%

def weights_init(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
torch.nn.init.normal (m.weight.detach(), mean=0, std=0.1)
torch.zero (m.bias.detach())

def weights_init(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
torch.nn.init.uniform (m.weight.detach(), -0.1, 0.1)
torch.zero (m.bias.detach())

model.apply(weights init) model.apply(weights_ init)

Default: Test accuracy 97.77%

. . 0 : . . 0
Xavier Normal: Test accuracy 97.69% Xavier Uniform: Test accuracy 97.36%
def weights_init(m): def weights_init(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
torch.nn.init.xavier normal (m.weight) torch.nn.init.xavier uniform (m.weight)
torch.zero (m.bias.detach()) torch.zero (m.bias.detach())
model.apply(weights init) model.apply(weights init)

He Normal: Test accuracy 97.67% He Uniform: Test accuracy 97.54%

def weights_init(m): def weights_init(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
torch.nn.init.kaiming normal (m.weight) torch.nn.init.kaiming uniform (m.weight)
torch.zero (m.bias.detach()) torch.zero (m.bias.detach())
model.apply(weights init) model.apply(weights init)

Sebastian Raschka STAT 479: Deep Learning SS 2019 19

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L13_intro-cnn/code/cnn-with-diff-init

Training with "Momentum"

Momentum

From Wikipedia, the free encyclopedia

This article is about linear momentum. It is not to be confused with angular momentum.
This article is about momentum in physics. For other uses, see Momentum (disambigué

In Newtonian mechanics, linear momentum, translational momentum, or simply
momentum (pl. momenta) is the product of the mass and velocity of an object. Itis a
vector quantity, possessing a magnitude and a direction in three-dimensional space. If m
IS an object's mass and v is the velocity (also a vector), then the momentum is

Source: https://en.wikipedia.org/wiki/Momentum

e Momentum is a jargon term in DL and is probably a misnomer in this context

e C(Concept: In momentum learning, we try to accelerate convergence by dampening
oscillations using "velocity" (the speed of the "movement" from previous updates)

Sebastian Raschka STAT 479: Deep Learning SS 2019

20

https://en.wikipedia.org/wiki/Momentum

Training with "Momentum"

e¢ Momentum is a jargon term in DL and is probably a misnomer in this context

e Concept: In momentum learning, we try to accelerate convergence by
dampening oscillations using "velocity" (the speed of the "movement" from

previous updates)

<

Without momentum With momentum

21

Training with "Momentum"

<

Without momentum With momentum

Key take-away:
Not only move in the (opposite) direction of the gradient, but also
move in the "averaged" direction of the last few updates

Sebastian Raschka STAT 479: Deep Learning SS 2019

22

Training with "Momentum"

Key take-away:
Not only move in the (opposite) direction of the gradient, but also
move in the "averaged" direction of the last few updates

Helps with dampening oscillations, but also helps with escaping

3

local minima traps / raumendon” (Ue051y)
O\
O >

Z,oSﬁ NS

5
/. >
W/.
Q yords Y/"HV’ Stuwd on Wd Sexbacen
CS&/J(L (Joiu!/)) odloc Aocal Nirima
L (XM,\MQ[

Sebastian Raschka STAT 479: Deep Learning SS 2019 23

Training with "Momentum™

Often referred to as "velocity" v

"velocity" from the previous

oL
Awij(t) = a - Bwg;(t —1) +n- o——(1)
v,J

Iteration

Usually, we choose a \

momentum rate between 0.9

and 0.999; you can think of Regular partial derivative/

it as a "friction" or gradient multiplied by

"dampening" parameter learning rate at current time
step ¢

Weight update using the velocity vector:
wi ;i (t+1) == w; (1) — Aw; (1)

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of
the International Neural Network Society, 12(1), 145-151. http://doi.org/10.1016/S0893-6080(98)00116-6

24

http://doi.org/10.1016/S0893-6080(98)00116-6

We often think of Momentum as a means of dampening oscillations

Step-size a = 0.02 Momentum g = 0.0

° Y and speeding up the iterations, leading to faster convergence. But it
I 1 1 1 I I has other interesting behavior. It allows a larger range of step-sizes
0 0.003 0.006 0.00 0.500 0.990 to be used, and creates its own oscillations. What is going on?

-

We often think of Momentum as a means of dampening oscillations

Step-size a = 0.02 Momentum § = 0.99

PY ° and speeding up the iterations, leading to faster convergence. But it
I 1 1 1 | I has other interesting behavior. It allows a larger range of step-sizes
0 0.003 0.006 0.00 0.500 0.990 to be used, and creates its own oscillations. What is going on?

Source: https://distill.pub/2017/momentum/

Sebastian Raschka STAT 479: Deep Learning SS 2019

25

https://distill.pub/2017/momentum/

CLASS torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0,

[SOURCE]

nesterov=False)

Implements stochastic gradient descent (optionally with momentum).

Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.

Parameters: e params (iterable) - iterable of parameters to optimize or dicts defining parameter groups
e Ir (float) - learning rate
e momentum (float, optional) - momentum factor (default: 0)
o weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
e dampening (float, optional) - dampening for momentum (default: 0)

e nesterov (bool, optional) - enables Nesterov momentum (default: False)

Example

Source: https://pytorch.org/docs/stable /optim.html

Sebastian Raschka STAT 479: Deep Learning SS 2019

26

https://pytorch.org/docs/stable/optim.html

CLASS torxch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0,

[SOURCE]
nesterov=False)

Implements stochastic gradient descent (optionally with momentum).

Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.

Parameters: e params (iterable) - iterable of parameters to optimize or dicts defining parameter groups
e Ir (float) - learning rate
e momentum (float, optional) - momentum factor (default: 0)
o weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
e dampening (float, optional) - dampening for momentum (default: 0)

e nesterov (bool, optional) - enables Nesterov momentum (default: False)

Example

Note that the optional "dampening" term is used as follows:

v = momentum *x v + (1-dampening) * gradientW
W=W-1lr % v

Also note that in PyTorch, the learning rate is also applied to the momentum terms, instead
of the original definition, which would be

momentum *x v + (1-dampening) *x 1r *x gradientW

\Y;
W W — v

Sebastian Raschka STAT 479: Deep Learning SS 2019

27

A Better Momentum Method:
Nesterov Accelerated Gradient

Similar to momentum learning, but performs a correction after the update (based on
where the loss, w.r.t. the weight parameters, is approx. going to be after the update)

Before:
Aw; == a - Awi_ 1+ 1 Ve L(wy)
Wil = Wy — AWy
Nesterov:
Aw; = a-Aw; 1+ 1 - Ve l(Wy —a - Aw;_q)
Wil = W — Awy

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence o(1/k2).
Doklady ANSSSR (translated as Soviet.Math.Docl.), vol. 269, pp. 543— 547.

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in
deep learning. ICML (3), 28(1139-1147), 5.

28

A Better Momentum Method:
Nesterov Accelerated Gradient

momentum term v,

-
-
-
-
-
-
- -
-
- -
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
z -

gradient 9(¢)
g6, + pv, Correction term (gradient of the point where you would

have ended up via the standard momentum method)

term

Figure 1. (Top) Classical Momentum (Bottom) Nes-
terov Accelerated Gradient

Sutskever, |., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in
deep learning. ICML (3), 28(1139-1147), 5.

29

A Better Momentum Method:
Nesterov Accelerated Gradient

Sutskever, |., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in
deep learning. ICML (3), 28(1139-1147), 5.

30

Adaptive Learning Rates

here are many different flavors of adapting the learning rate
(bit out of scope for this course to review them all)

Key take-aways:

® decrease learning if the gradient changes its direction

@ increase learning if the gradient stays consistent

31

Adaptive Learning Rates

Key take-aways:

® decrease learning if the gradient changes its direction

® increase learning if the gradient stays consistent

Step 1: Define a local gain (g) for each weight (initialized with g=1I)

0L
821]2"]'

Awij 2= 1 Gi,j

32

Adaptive Learning Rates

Step 1: Define a local gain (g) for each weight (initialized with g=1)

0L
Aw; j:=1"Gij - >

Wi,
Step 2:
Note that
|t gradient IS consistent multiplying by a factor has a larger
impact if gains are large, compared
9i,j (t) = Yi,j (t o 1) T 5 to adding a term
else (dampening effect if updates oscillate

in the wrong direction)

9i.j(t) == gi;(t —1)- (1 —p)

33

Adaptive Learning Rate via RMSProp

® Unpublished algorithm by Geoff Hinton (but very popular) based on Rprop [1]
® Very similar to another concept called AdaDelta

® Concept: divide learning rate by exponentially decreasing moving average of the squared
gradients

® T his takes into account that gradients can vary widely in magnitude
® Here, RMS stands for "Root Mean Squared"

® Also, damps oscillations like momentum (but in practice, works a bit better)

[1] Igel, Christian, and Michael Hiisken. "Improving the Rprop learning algorithm." Proceedings of the Second International
ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.

34

Adaptive Learning Rate via RMSProp

2
MeanSquare(wi,jat) — 5 . MeanSquare(wi,j,t — 1) _|_ (1 — 5)(8£t)>

/ Wi, (

moving average of the squared gradient for each weight

0L
w; (1) == w; ;i (t) —n - ™ (t)/ <\/Mean5quare (w; 4,t) + e>
i,

where beta is typically between 0.9 and 0.999 small epsilon term to

avoid division by zero

35

Adaptive Learning Rate via ADAM

® ADAM (Adaptive Moment Estimation) is probably the most widely used
optimization algorithm in DL as of today

® It is a combination of the momentum method and RMSProp

Momentum-like term: /mt—l
Aw: (1) = o2\ {+ — 1)+ n- 0L (t) original momentum term
wz’J() = uw@a] \Y 7 77 &
< Wi;
e oL

m ;= a-my_1+ (1 —a)-
8?1]@7]'
RMSProp term:

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

36

Adaptive Learning Rate via ADAM

Momentum-like term:

0L .
Awi,j (t) = (7 ﬁﬁﬁz,j (t __ 1) 7 - (t) original momentum term
6"(1]@',]
F(1—a) 2= (1)
Ty = O - TN — —) -
4 t—1 8wz’]

RMSProp term: oL 2
ro—= 6 . MeanSquaTe(wi,j;t o]‘) T (1 - 5)< : (t))

ADAM update:

TN
= Wy 5 —
) 77\/;+€

Wi, g

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

37

Adaptive Learning Rate via ADAM

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2 indicates the elementwise
square g: ® g;. Good default settings for the tested machine learning problems are a = 0.001,
B1 = 0.9, B = 0.999 and € = 10~3. All operations on vectors are element-wise. With 3¢ and 3}
we denote 37 and (35 to the power ¢.

Require: «: Stepsize
Require: (31,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters ¢
Require: 6: Initial parameter vector
mo < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2"¢ moment vector)
t < 0 (Imtialize timestep)
while 6; not converged do
t<—1t+1
g: < Vo fi(6:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my_1 + (1 — B1) - g: (Update biased first moment estimate)
vy < P2 - vi_1 + (1 — B2) - g7 (Update biased second raw moment estimate)
m: < m¢/(1 — 07) (Compute bias-corrected first moment estimate)
vy < vy /(1 — B%) (Compute bias-corrected second raw moment estimate)
O <~ 011 — a - iy /(VU; + €) (Update parameters) | odd 5 bias correction term
end while
return 6; (Resulting parameters) for better conditioning in earlier iterations

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

38

Adaptive Learning Rate via ADAM
oL
(2)

6’wi,j

my :=a-my_1+ (1 —a)-

: MeanSqUWfﬁ(wi,jvt - 1) ™ (1 N 5) ow; (t)
iy

CLASS torxch.optim.Adam(params, 1r=0.001, betas=(0.9, 0.999), eps=1e-08,
weight_decay=0, amsgrad=False)

Implements Adam algorithm. The default Settings for the

It has been proposed in Adam: A Method for Stochastic Optimization.

[SOURCE] (%’

Parameters: o params (iterable) - iterable of parameters to optimize or dicts defining
parameter groups
e Ir (float, optional) - learning rate (default: 1e-3)

e betas (Tuple[float, float], optional) - coefficients used for computing running

averages of gradient and its square (default: (0.9, 0.999))
e eps (float, optional) - term added to the denominator to improve numerical

stability (default: 1e-8)

..... o Bammca /i mcmslmcmal\ cssmtmulat dmmmi s 1M i lac N LDl M. AN\

Source: https: //thorch org/docs/stable/optim.html
Sebastian Raschka STAT 479: Deep Learning SS 2019

"betas" work usually just fine

39

https://pytorch.org/docs/stable/optim.html

https://bl.ocks.org/EmilienDupont /aaf429be5705b219aaaf8d691e27ca87

Sebastian Raschka STAT 479: Deep Learning SS 2019 40

https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before,

you can find an overview at: https://pytorch.org/docs/stable/optim.html

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.01, momentum=0.9)
torch.optim.Adam(model.parameters(), 1lr=0.0001)

optimizer

41

https://pytorch.org/docs/stable/optim.html

Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before,

you can find an overview at: https://pytorch.org/docs/stable/optim.html

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.01, momentum=0.9)
torch.optim.Adam(model.parameters(), 1r=0.0001)

optimizer

Remember to save the optimizer state if you are using, e.g., Momentum or

ADAM, and want to continue training later
(see earlier slides on saving states of the learning rate schedulers).

Sebastian Raschka STAT 479: Deep Learning SS 2019 42

https://pytorch.org/docs/stable/optim.html

Training Loss vs Generalization Error

Improving Generalization Performance by Switching from
Adam to SGD

Nitish Shirish Keskar, Richard Socher
(Submitted on 20 Dec 2017)

Despite superior training outcomes, adaptive optimization methods such as Adam, Adagrad
or RMSprop have been found to generalize poorly compared to Stochastic gradient descent
(SGD). These methods tend to perform well in the initial portion of training but are
outperformed by SGD at later stages of training. We investigate a hybrid strategy that
begins training with an adaptive method and switches to SGD when appropriate. Concretely,
we propose SWATS, a simple strategy which switches from Adam to SGD when a triggering
condition is satisfied. The condition we propose relates to the projection of Adam steps on
the gradient subspace. By design, the monitoring process for this condition adds very little
overhead and does not increase the number of hyperparameters in the optimizer. We report
experiments on several standard benchmarks such as: ResNet, SENet, DenseNet and
PyramidNet for the CIFAR-10 and CIFAR-100 data sets, ResNet on the tiny-ImageNet data
set and language modeling with recurrent networks on the PTB and WT2 data sets. The
results show that our strategy is capable of closing the generalization gap between SGD and
Adam on a majority of the tasks.

Sebastian Raschka STAT 479: Deep Learning SS 2019

43

training cost

Training Loss vs Generalization Error

1 MNIST Multilayer Neural Network + dropout

— AdaGrad
RMSProp
SGDNesterov | |
AdaDelta |
Adam

10

| | |
0 50 100 150 200
iterations over entire dataset

Kingma, D. P., & Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint arXiv:
1412.6980.

25.0
-------- SGD —— Clip-(1,)
22.5-t ---- Adam —— Clip-(0,1)
2Qo¢
— :
O 17.5+k
— |
L R
@15 0 - "::i-: :
B2 W .. LE
MV L (3 e IR ¥ e s, S
10. v ,v“',.':ﬂl i 11 ik
0.0 TN IVl
7.5 \ o b a
5.0 ~
0 25 50 75 100 125 150 175 200

Epochs

Keskar, N. S., & Socher, R. (2017). Improving
generalization performance by switching from adam to
sgd. arXiv preprint arXiv:1712.07628.

Sebastian Raschka STAT 479: Deep Learning SS 2019 44

Reading Assignment

"An overview of gradient descent optimization algorithms" by Sebastian Ruder:
http://ruder.io/optimizing-gradient-descent /index.html

45

http://ruder.io/optimizing-gradient-descent/index.html

