Lecture 10

Regularization

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka
http://stat.wisc.edu/ sraschka/teaching /stat479-ss2019/



http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Overview: Regularization / Regularizing Effects

e Early stopping
e Li/L> regularization (norm penalties)

e Dropout

Goal: reduce overfitting

usually achieved by reducing model capacity and/or reduction of
the variance of the predictions (as explained last lecture)



Best Way to Reduce Overfitting is Collecting More Data

1.00

0.98
0.96\\_\__.-
094 o Train

=== Test

Accuracy
o
O
N

0.90
0.88

0.86

1000 2000 3000 4000 5000
Training Set Size

Softmax on MNIST subset (kept test set size constant)



Best Way to Reduce Overfitting is Collecting More Data

e (Collecting more data is always recommended

e If not possible, data augmentation is also helpful (e.g., for images: random
rotation, crop, translation ...) -- actually, this is always recommended (and easy

to do)

e Additionally, reducing the capacity (e.g., regularization) helps

(In statistics, | notice the tendency to come up with more and more complex
modeling techniques, based on heavy and unrealistic assumptions, whereas usually the
data amount and quality is the real bottleneck ... e.g., a Bayes Optimal Classifier is
not really more useful than logistic regression if the data is no good => "garbage in
garbage out" principle)



Data Augmentation in PyTorch via TorchVision

training transforms = torchvision.transforms.Compose [
#torchvision.transforms.RandomRotation(degrees=20),
#torchvision.transforms.Resize(size=(34, 34)),
#torchvision.transforms.RandomCrop(size=(28, 28)),

torchvision.

torchvision.
torchvision
# normalize
# if images

1)

test transforms
torchvision.
torchvision.

1)

# for more see

transforms.RandomAffine(degrees=(-20, 20), translate=(0.15, 0.15),
resample=PIL.Image.BILINEAR),
transforms.ToTensor (),

.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),

does (x i - mean) / std
are [0, 1], they will be [-1, 1] afterwards

= torchvision.transforms.Compose( [
transforms.ToTensor (),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),

# https://pytorch.org/docs/stable/torchvision/transforms.html

train dataset =

datasets .MNIST(root='data',
train=True,
transform=training transforms,
download=True)

test dataset = datasets.MNIST(root='data',

train=False,
transform=test transforms)

Sebastian Raschka STAT 479: Deep Learning SS 2019



Data Augmentation in PyTorch via TorchVision

Original

Augmented

Augmented w/o °

/

20

4

20

10

r4

0

20

0 -
10 1

20 -

0 1
10 1

20 -

0 -
10 -

20 -

3

10 1

20 -

0

20

20

Pa

10 1

20 -

0

20

20

P

10 1

20 -

0

20

resample=PIL. Image.BILINEAR

20

0 -
10 A

20 -

0 -
10 -

20 -

10 A

20 -

q

0

20

g

0

20

note that it is random

7

0

20

note that it is random

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L10 regularization/code/

Sebastian Raschka

data-augmentation.ipynb

STAT 479: Deep Learning

SS 2019 6


https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L10_regularization/code/data-augmentation.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L10_regularization/code/data-augmentation.ipynb

Now: Other Ways for Dealing with Overfitting
if Collecting More Data is not Feasible
—> Reducing Network's Capacity by Other Means



Now: Other Ways for Dealing with Overfitting
if Collecting More Data is not Feasible
—=> Reducing Network's Capacity by Other Means

e smaller architecture: fewer hidden layers & units, dropout,
(dead RelLUs, L1 norm penalty)

e smaller weights: Early stopping, norm penalties

e adding noise: Dropout



Now: Other Ways for Dealing with Overfitting
if Collecting More Data is not Feasible
—=> Reducing Network's Capacity by Other Means
e smaller architecture: fewer hidden layers & units, dropout,

(dead RelLUs, L1 norm penalty)
o[smaller Weights:]EarIy stopping, norm penalties

e adding noise: Dropout

1.0 -

0.8 A

Consider extreme case o6

—_

(and think of what that leads to, =
in context of last lecture)

0.4 1

0.2 -

0.0 A




Early Stopping

Step 1: Split your dataset into 3 parts | | /Da}agel(
(always recommended) f T owun 1o da&aT ) ( . 7
e use test set only once at the end (for unbiased / \,_
: : : ) CSL' da‘t(&
estimate of generalization performance) Ve clodon
e use validation accuracy for tuning (always horow
recommended)

A
Step 2: Early stopping

(not very common anymore)

C
e reduce overfitting by observing the Acewst
training/validation accuracy gap during
training and then stop at the "right"

point \

10



L1/L2 Regularization

As | am sure you already know it from various statistics classes,
we will keep it short:

e |i-regularization => LASSO regression
e Lo-regularization => Ridge regression (Thikonov regularization)

Basically, a "weight shrinkage" or a "penalty against complexity"

11



L1/L2 Regularization

1 « N
Costwp = — > Ly, gt
1—=1
1 — .
L2-Regularized-Cost,, , = — > Lyl gl*
egularized-Costy, }, n; (y*, ') +

where: Y w3 = ||w]|3
J

and A is a hyperparameter

12



L1/L2 Regularization

L1-Regularized-Costy, |, = Z L(y ) + — Z w,|

wheres Y [w;] = ||wlls
J

e L1-regularization encourages sparsity (which may be useful)

e However, usually L1 regularization does not work well in practice
and is very rarely used

e Also, it's not smooth and harder to optimize

13



Geometric Interpretation of L, Reqularization

'W .

:

1st component:
minimize cost function

S

A

\

A

2nd component:

minimize penalty term

= >

W

Compromise between penalty
and cost

14



Geometric Interpretation of L, Reqularization

1st component:
minimize cost function

2nd component:
minimize penalty term

Compromise between penalty
and cost

15



Lo Regularization for Neural Nets

L2-Regularized-Cost,, }, = Z L(y ) + — Z w3

/

sum over layers

where HW(Z) ‘ |%1 is the Frobenius norm (squared):

[w®][7 = LL )’

16



Lo Regularization for Neural Nets

Regular gradient descent update:

L
n@wi,j

Wi,j 1= Wi,

Gradient descent update with L2 regularization:

oL 2\
Wi j = Wi j — N | Wj

c?w@-,j n

17



Lo Reqularization for Logistic Regression in PyTorch

Manually:

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

for epoch in range(num_epochs): (Note that | am using 0.5 here because PyTorch does it;

#### Compute outputs #### Could be considered "convenient " as the exponent "2"

out = model(X train tensor) cancels in the derivative. This implementation exactly
- B matches the one on the next slide)
#### Compute gradients ####

i

## Apply L2 regqularization (weight decay)

cost = F.binary cross entropy(out, y train tensor, reduction='sum')

cost = cost + 0.5 * LAMBDA * torch.mm(model.linear.weight,
model.linear.weight.t())

# note that PyTorch also reqgularizes the bias, hence, if we want

# to reproduce the behavior of SGD's "weight decay" param, we have to add
# the bias term as well:

cost = cost + 0.5 * LAMBDA * model.linear.bias**2

optimizer.zero_grad() https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L10 regularization/
cost.backward() code/L2-log-reg.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 18


https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L10_regularization/code/L2-log-reg.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L10_regularization/code/L2-log-reg.ipynb

Lo Reqularization for Logistic Regression in PyTorch

Automatically:

HHATHHHHHHH AT HH A AT HH AT HHATHHHHFH R FHHAAFH AT R AT HHHAAFH A
## Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),

1r=0.1,

weight decay=LAMBDA)

for epoch in range(num epochs):

#### Compute outputs ####
out = model(X train tensor)

#### Compute gradients ####

cost = F.binary cross entropy(out, y train tensor, reduction='sum')
optimizer.zero grad()

cost.backward()

https://github.com /rasbt/stat479-deep-learning-ss19/blob/master/L10_ regularization/
code/L2-log-reg.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 19


https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L10_regularization/code/L2-log-reg.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L10_regularization/code/L2-log-reg.ipynb

Question: Why is the bias usually not regularized (if

you think of linear models)?

Sebastian Raschka STAT 479: Deep Learning SS 2019

20



Lo Reqularization for Neural Nets in PyTorch

e For all layers, same as before ("automatic approach" via weight_decay)

¢ OI’, manua”y: for epoch in range(NUM EPOCHS):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28*28).to(DEVICE)
targets = targets.to(DEVICE)

### FORWARD AND BACK PROP
logits, probas = model(features)

cost = F.cross entropy(logits, targets)

# regqularize loss
L2 = 0.
for p in model.parameters():
L2 = L2 + (p**2).sum()
cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward()

Sebastian Raschka STAT 479: Deep Learning SS 2019 21



Lo Reqularization for Neural Nets in PyTorch

e For all layers, same as before ("automatic approach" via weight_decay)

¢ OI’, manua”y: for epoch in range(NUM EPOCHS):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

Why did | use
" /target.size(0)" here?

Sebastian Raschka STAT 479: Deep Learning SS 2019 22

features = features.view(-1, 28*28).to(DEVICE)
targets = targets.to(DEVICE)

### FORWARD AND BACK PROP
logits, probas = model(features)

cost = F.cross entropy(logits, targets)

# regqularize loss
L2 = 0.
for p in model.parameters():
L2 = L2 + (p**2).sum()
cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward()



Lo Reqularization for Neural Nets in PyTorch

e Or, if you only want to regularize the weights, not the biases:

# regularize loss
L2 = 0.
for name, p in model.named parameters():
if 'weight' in name:
L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward()

23



Effect of Norm Penalties on the Decision Boundary

Assume a nonlinear model

2 A
AN
%%O x /O XD
Kcvyo “ o O « O O
X XKY Kk/'k
> — >

Zaw\,& @ Jméw'%“bﬂ Pm/% Low r"d"‘("w‘oid‘."” Good (oupronafe

—> 1/7,'3(4 b/as =5 Lv'dbz Vonau o



Dropout



Dropout

Original research articles:

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R. (2012).

Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), 1929-1958.

Sebastian Raschka STAT 479: Deep Learning SS 2019

20



Dropout in a Nutshell: Dropping Nodes

Originally, drop probability 0.5
(but 0.2-0.5 also common now)

Sebastian Raschka STAT 479: Deep Learning SS 2019

27



Dropout in a Nutshell: Dropping Nodes

How do we drop the nodes practically/efficiently?

Bernoulli Sampling (during training):

e p := drop probability
e v := random sample from uniform distribution in range [0, 1]

® Viev: v, :=01f v; < p else v;
e a:—a®®WvVv

hen, after training to make predictions (DL jargon: "inference")
a:=a®(1l—p)

28



Dropout in a Nutshell: Dropping Nodes

How do we drop the nodes practically/efficiently?

Bernoulli Sampling (during training):

e p := drop probability
e v := random sample from uniform distribution in range [0, 1]

® Viev: v, :=01f v; < p else v;
e a:—a®®WvVv

hen, after training to make predictions (DL jargon: "inference")

a:=a®(1—p) Q for you: Why is this required?

29



Dropout: Co-Adaptation Interpretation

Why does Dropout work well?
e Network will learn not to rely on particular connections too
heavily

e Thus, will consider more connections (because it cannot rely on
individual ones)

e The weight values will be more spread-out (may lead to smaller
weights like with L2 norm)

e Side note: You can certainly use different dropout probabilities in
different layers (assigning them proportional to the number of
units in a layer is not a bad idea, for example)

30



Dropout: Ensemble Method Interpretation

Model Averaging (Ensembling)

If you are interested in more details, see FS 2018 ML class (L07):
https://github.com/rasbt/stat479-machine-learning-fs18 /blob/master/07 ensembles/
07 ensembles notes.pdf



https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/07_ensembles/07_ensembles_notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/07_ensembles/07_ensembles_notes.pdf

Dropout: Ensemble Method Interpretation

In DL, we typically don't do regular ensembling (majority vote
over a large number of networks, bagging, etc.) because it is very

expensive to fit neural nets

However, we know that the squared error for a prediction by a
randomly selected model is larger than the squared error using an
ensemble prediction (here, average over class probabilities)

Elly —§'")?] = (y — E[g1V])* + (5' — E[5'"])?
(expectation is over models 7 )

If you are interested in more details and where this comes from, see FS 2018 ML class (L08):

https://github.com /rasbt/stat479-machine-learning-fs18/blob/master/08 eval-intro/08 eval-

intro__notes.pdf



https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/08_eval-intro/08_eval-intro_notes.pdf
https://github.com/rasbt/stat479-machine-learning-fs18/blob/master/08_eval-intro/08_eval-intro_notes.pdf

Dropout: Ensemble Method Interpretation

e Now, in dropout, we have a different model for each minibatch

e Via the minibatch iterations, we essentially sample over M =2
models, where h is the number of hidden units

e Restriction is that we have weight sharing over these models,
which can be seen as a form of regularization

e During "inference" we can then average over all these models
(but this is very expensive)



Dropout: Ensemble Method Interpretation

e During "inference" we can then average over all these models
(but this is very expensive)

This is basically just averaging log likelihoods:

Mo M
PEnsemble — { H p{Z}}
j=1

= exp |1/M f: log(p'™)

]:

(you may know this as the "geometric mean" from other classes)

For multiple classes, we need to normalize so that the probas sum
to 1: PEnsemble, j

PEnsemble, j —

k
Zj: 1 pEnsemble, ]



Dropout: Ensemble Method Interpretation

e During "inference" we can then average over all these models
(but this is very expensive)

e However, using the last model after training and scaling the
predictions by a factor 1/(1-p) approximates the geometric mean
and is much cheaper
(actually, it's exactly the geometric mean if we have a linear
model)



Inverted Dropout

e Most frameworks implement inverted dropout

e Here, the activation values are scaled by the factor 1/(1-p)
during training instead of scaling the activations during
"inference"

e | believe Google started this trend (because it's computationally
cheaper in the long run if you use your model a lot after
training)

e PyTorch's Dropout implementation is also inverted Dropout

36



Dropout in PyTorch

Here, is is very important that you use model.train() and model.eval()!

( model.train() Bl :)

for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28%*28).to(DEVICE)

### FORWARD AND BACK PROP
logits, probas = model(features)

cost = F.cross entropy(logits, targets)
optimizer.zero grad()

cost.backward ()

minibatch cost.append(cost)
### UPDATE MODEL PARAMETERS
optimizer.step()

(: model.eval () :)
with torch.no grad():
cost = compute loss(model, train loader)
epoch cost.append(cost)
print( 'Epoch: %03d/%03d Train Cost: %.4f'
epoch+1, NUM EPOCHS, cost))
print('Time elapsed: %.2f min' % ((time.time() - start time)/60))

o©

(

Sebastian Raschka STAT 479: Deep Learning SS 2019



Dropout in PyTorch ([more] Object-Oriented API)

class MultilayerPerceptron(torch.nn.Module):

def init (self, num features, num classes, drop proba,
num hidden 1, num hidden 2):
super (MultilayerPerceptron, self). init ()

self.my network = torch.nn.Sequential(
torch.nn.Linear (num features, num hidden 1),
torch.nn.RelLU(),
torch.nn.Dropout (drop proba),
torch.nn.Linear(num hidden 1, num hidden 2),
torch.nn.RelLU(),
torch.nn.Dropout (drop proba),
torch.nn.Linear (num hidden 2, num classes)

)

def forward(self, x):
logits = self.my network(x)
probas = F.softmax(logits, dim=1)
return logits, probas

Sebastian Raschka STAT 479: Deep Learning SS 2019 38



Dropout in PyTorch (Functional API)

class MultilayerPerceptron(torch.nn.Module):

def  init_(self, num features, num classes, drop proba,
num hidden 1, num hidden 2):
super (MultilayerPerceptron, self). init ()

self.drop proba = drop proba
self.linear 1 = torch.nn.Linear(num features,
num hidden 1)

self.linear 2 = torch.nn.Linear(num hidden 1,
num hidden 2)

self.linear out = torch.nn.Linear(num hidden 2,
num classes)

def forward(self, x):
out = self.linear 1(X)
out = F.relu(out)
out = F.dropout(out, p=self.drop proba, training=self.training)
out = self.linear 2(out)
out = F.relu(out)
out = F.dropout(out, p=self.drop proba, training=self.training)
logits = self.linear out(out)
probas = F.log softmax(logits, dim=1)
return logits, probas

Sebastian Raschka STAT 479: Deep Learning SS 2019



Dropout in PyTorch (Functional API)

Example implementation of the 3 previous slides:

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L10 regularization/code/

dropout.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 40


https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L10_regularization/code/dropout.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L10_regularization/code/dropout.ipynb

Dropout: More Practical Tips

e Don't use Dropout if your model does not overfit

e However, in that case above, it is then recommended to increase
the capacity to make it overfit, and then use dropout to be able
to use a larger capacity model (but make it not overfit)

41



DropConnect: Randomly Dropping Weights

Sebastian Raschka STAT 479: Deep Learning SS 2019

42



DropConnect

e Generalization of Dropout

e More "possibilities"

e Less popular doesn't work so well in practice

Original research article:

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., & Fergus, R. (2013, February). Regularization

of neural networks using dropconnect. In International conference on machine learning
(pp. 1058-1060).

43



Reading Assignments (today optional)

e Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), 1929-1958.

http://imlIr.org/papers/volume15/srivastaval4a/srivastavai4a.pdf

Sebastian Raschka STAT 479: Deep Learning SS 2019

44


http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

DL Competition

Highest accuracy wins (needs to be reproducible)
$50 Amazon Gift Card
Participate alone or in group (up to 5)

Details in: https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/dl-competition/
stat479-ss2019-comp.ipynb

L] rasbt / stat479-deep-learning-ss19 ® Unwatch ~

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settir

Branch: master v = stat479-deep-learning-ss19 / dl-competition / stat479-ss2019-comp.ipynb

ﬁ rasbt dl competition

1 contributor

1132 lines (1131 sloc) 107 KB ¢ B R

STAT 479: Deep Learning (Spring 2019)

Instructor: Sebastian Raschka (sraschka@wisc.edu)

Course website: http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/
GitHub repository: https://github.com/rasbt/stat479-deep-learning-ss19

Sebastian Raschka STAT 479: Deep Learning SS 2019 45


https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/dl-competition/stat479-ss2019-comp.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/dl-competition/stat479-ss2019-comp.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/dl-competition/stat479-ss2019-comp.ipynb

DL Competition

e Accuracy score submission Form: https://docs.google.com/forms/d/e/
1FAIpQLSfvw__ INsImfWOfZbQhUsM5XYelL GEUOCcKrN1Zyb1ROwQOhd7g/viewform?

usp=sf_link (link in Notebook)

Stat 479 DL Competition

See https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/dl-competition/stat479-

$52019-comp.ipynb for details.

Your email address (sraschka@wisc.edu) will be recorded when you submit this form. Not you?
Switch account

* Required

Test Set Accuracy (e.g., 95.5) *

First Name, Last Name *

Sebastian Raschka STAT 479: Deep Learning SS 2019

46


https://docs.google.com/forms/d/e/1FAIpQLSfvw_JNsImfW0fZbQhUsM5XYeLGEUOCcKrN1Zyb1R0wQ0hd7g/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfvw_JNsImfW0fZbQhUsM5XYeLGEUOCcKrN1Zyb1R0wQ0hd7g/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfvw_JNsImfW0fZbQhUsM5XYeLGEUOCcKrN1Zyb1R0wQ0hd7g/viewform?usp=sf_link

DL Competition

e Live Leaderboard: https://docs.google.com/spreadsheets/d/
111sz5AT0p6pkYh9Az8ZWxKPD8SleUkg32mvOkelHnEw /edit#gid=1372722537 (link in
Notebook)

e Submit code to Canvas until May 1st 11:59 pm

STAT479 SS2019 Competition Results

File Edit View Insert Format Data Tools Form Add-ons Help

|

SP19 STAT 479 001 > Assignments > [Optional] Deep Learning Competition

“~ ~om P O100% v § % .0 .00 123~ Arial - 10 -
Spring 2018-2019 . .
[Optional] Deep Learning © rubi _
Test Set Accuracy (e.g., 95.5) Timestamp First Name, Last Name Account Home C t_it_i Published N Edit
55.5 3/7/2019 14:36:28 Test Student . ) Ompe on
444 3/7/2019 14:37:01 My Name o) Piazza
4 333 3/7/2019 14:44:32 Sebastian Raschka Dashboard
) This is an optional competition that you can participate in to test your deep
earning skills! There will be no grade or points for this competition, an
o Assignments learning skills! Th ill b d ints for thi titi d
ourses
Discussions participation is entirely optional.
. Grades The winner of this competion will receive a $50 Amazon gift card that you can

G use for whatever you like :). In case of a tie, the earliest submission (latest

People submission date is Wed, May 01 11:59 pm) with the best score wins.

Vi ran cithmit vanir ealiifian ac a cinala narficrinant Ar ac 2 armniin in A B

(private, automatically updated, viewing only)

Sebastian Raschka STAT 479: Deep Learning SS 2019 47


https://docs.google.com/spreadsheets/d/11lsz5AT0p6pkYh9Az8ZWxKPD8SleUkq32mv0keIHnEw/edit#gid=1372722537
https://docs.google.com/spreadsheets/d/11lsz5AT0p6pkYh9Az8ZWxKPD8SleUkq32mv0keIHnEw/edit#gid=1372722537

(6>

)) Department of Statistics Er S

(W

W
UNIVERSITY OF WISCONSIN-MADISON UW Search | MyUW | Map | Calendar
HOME | DEGREES | PEOPLE | RESEARCH | COURSES | ABOUTUS | RESOURCES | SERVICES
Requesting GPUs when using CUDA tools KNGW Department GPUs \
Submit a Python job that requires 1 GPU device ® grad students log in as usual, just

need to specify GPU in SLURM submit script

#!/bin/bash

#SBATCH --mail-user=userfstat.wisc.edu
#SBATCH --mail-type=ALL ® undergrad students can get an account via request:
#SBATCH -p gpu

#SBATCH --gres=gpu:l . ) . ] ] )
SSBATCH —-meme2C ® email me first with and | will arrange with our sysadmin

#SBATCH -D /WOI’}(SpaCC/USQI L (Wi” need Student ID number) J

#SBATCH -c 4

mycondaenv/bin/python code.py =--outpath output --seed 0 --cuda 0 --numworkers 3

@ you need to be somewhat familiar with Linux/Unix

In this example, we set the partition with -p to gpu to get the GPU node on the cluster. We request 1 GPU with the directive --
gres:gpu:l. Total memory for this job is 2 gigabytes, --mem=2G. We set our working directory with -D so that we can use
relative paths in our execution line of the script. Lastly, we request 4 CPUs to go with our GPU job for subprocessing. We request
4 cpus because our Python job --numworkers is set to 3, and there is one parent process along with them, for a total of 4 CPU
processes. Be mindful of CPU requests and do not request too little, or too much for your GPU job. If one GPU job uses all the
CPU on the node, no other GPU job can run on the node. There are currently a total of 8, NVIDIA RTX 2080ti devices in total.

Depending on what tools you are using to work with CUDA and GPUs, your syntax for the actual execution may differ. In this
example, and in many other tools, the --cuda option is set to 0, which is not an absolute number that refers to the device.
Instead, you are asking for cuda device '0' which will be the first GPU device available, which could be GPU 0,1,2,3,4,5,6 or 7.

If you have specific GPU questions please consult with the lab to get your job running efficiently.

Sebastian Raschka STAT 479: Deep Learning SS 2019 48



