Lecture 04

Linear Algebra
for Deep Learning

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka
http://stat.wisc.edu/ sraschka/teaching /stat479-ss2019/



http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Tensors



Vectors, Matrices, and Tensors -- Notational Conventions

Scalar Vector
(rank-0 tensor) (rank-1 tensor)
r e R x € R"
but in this lecture,
e.g., we will assume
r=1 x € R**1
e.g.,
o
L2
X = | .
XT = [331 L9

xn}  where x' e RY*™

Matrix

(rank-2 tensor)

X c Ran

e.g.,

L1.1 L1.2
L2 1 L2 2

Lm,1 Lm,2




Vectors, Matrices, and Tensors -- Notational Conventions

We will often use X as a special convention to refer to the

"design matrix." That is, the matrix containing the training
examples and features (inputs)

and assume the structure X € R"**™

because n is often used to refer to the number of examples in
literature across many disciplines.

E.g.
- 1 1] 1
m[1 | 37[2 | e an] 517[2 | = 2nd feature value of the 1st
513[12] :1’;[22] . .Cl?f[r%,] training example
X —
HOR R



Why the "ugly" superscript?

Even in context, X; may not be always clear:

e does it refer to the feature vector of the ith training example?
e does it refer to ith feature column across training examples?




Why the "ugly" superscript?

X; and X[J] are less ambiguous

)




Vectors, Matrices, and Tensors -- Notational Conventions

3D Tensor

(rank-3 tensor)

X c RanXp




An Example of a 3D Tensor in DL

Single color image

Image Source: https://code.tutsplus.com/tutorials/create-a-retro-crt-distortion-effect-using-rgb-shifting--active-3359

(3D tensor for "multidimensional-array" storage and parallel computing purpose,
we still use regular vector and matrix math)

Sebastian Raschka STAT 479: Deep Learning SS 2019



An Example of a 4D Tensor in DL

e L || [P
et 2 A S
o o WSS B
RSN P
oachof mgs I O N
(as neural network input, 1> = | ﬂ.’i ;
more later) oo [RESCISBIRIE &
rog I I N 1 O N B
e RS 3 D R
v el e
weok o] el 2 S o L S O

https://www.cs.toronto.edu/~kriz/cifar.html

(4D tensor for "multidimensional-array" storage and parallel computing purpose,
we still use regular vector and matrix math)

Sebastian Raschka STAT 479: Deep Learning SS 2019



Interlude: Multidimensional Arrays as Tensors

numpy.array / numpy.ndarray =
(data structure representation of a tensor)

pytorch.tensor / pytorch.Tensor =
(data structure representation of a tensor)

Examp|e: In [1]: import numpy as np

: import torch

. a

. np.array([1l., 2., 3.1])
: b

torch.tensor([1., 2., 3.])

In [2]: print(a.dtype)
: print(b.dtype)

: print(a.shape)
...: print(b.shape)
floaté64
torch.float32
(3,)
torch.Size([3])



Example:

In [1]:

NumPy and PyTorch Syntax is Very Similar

import numpy as

: import torch

: a = np.array([1
: b = torch.tensor([1., 2., 3.1])

In [2]:
14.0

print(a.dot(a))

np

es 2.

In [3]: print(b.matmul(b))
tensor(14.)

In [4]:
Oout[4]:

In [5]:
Out[5]:

b.numpy ()
array([1l., 2.,

torch.tensor(a)
tensor([1l., 2.,

3.1,

3.1,

r 3-1)

Note: "dot" vs "matmul"

dtype=float32)

dtype=torch.float64)

We can convert,
but pay attention to
default types

11



Data Types to Memorize

NumPy data type « Tensor data type

numpy

numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .

numpy .

.uint8
intlé6
int32
int
int64
floatleé6
float32
float
float64

torch.ByteTensor
torch.ShortTensor
torch.IntTensor
torch.LongTensor
torch.LongTensor
torch.HalfTensor
torch.FloatTensor
torch.DoubleTensor

torch.DoubleTensor

e E.g., int32 stands for 32 bit integer
32 bit floats are less precise than 64 floats, but for neural nets, it doesn't

matter much

default int in NumPy & PyTorch

default float in PyTorch

default float in NumPy

For regular GPUs, we usually want 32 bit floats (vs 64 bit floats) for fast performance

12



PyTorch is Picky about Types

In [20]: ¢ = torch.tensor([1l., 2., 3.])
d = torch.tensor([1, 2, 3])
print(c - d)
RuntimeError Traceback (most recent call last)

<ipython-input-20-b04feb3ca8b4> in <module>
2 d = torch.tensor([1, 2, 3])
3

—~——=> 4 print(c - d)

RuntimeError: expected type torch.FloatTensor but got torch.LongTensor

Sebastian Raschka STAT 479: Deep Learning SS 2019

13



PyTorch is Picky about Types

Specify the type upon construction based on your main use case:

In [21]: ¢ = torch.tensor([1l., 2., 3.], dtype=torch.float)
: d = torch.tensor([1, 2, 3], dtype=torch.float)

: print(c d)
tensor([0., 0., 0.])

You can also change types later/on the fly if you must

In [22]: ¢ = torch.tensor([1l., 2., 3.1])
: d = torch.tensor([1, 2, 3])

: print(c.float() d.float())

.: print(c.double() d.double())
: print(c.int() d.int())
...: print(c.long() d.long())
tensor([0., 0., 0.7)
tensor([0., 0., 0.], dtype=torch.floaté64)

tensor ([0, 0, 0], dtype=torch.int32)
tensor ([0, 0, 01])



So, Why Not Just Using NumPy?

e PyTorch has GPU support:

A. we can load the dataset and model parameters into GPU memory
B. on the GPU we then have better parallelism for computing (many)
matrix multiplications

e Also, PyTorch has automatic differentiation (more later)

e Moreover, PyTorch implements many DL convenience functions (more later)

15



Loading Data onto the GPU is Easy!

In [23]: print(torch.cuda.is available())
True

In [24]: b = b.to(torch.device('cuda:0"'))
: print(b)

tensor([1l., 2., 3.], device='cuda:0")
In [25]: b = b.to(torch.device('cpu'))

: print(b)
tensor([1l., 2., 3.1])

16



How to Check Your CUDA Devices

e If you have CUDA installed, you should have access to nvidia-smi

e However, if you are using a laptop, you probably don't have CUDA

compatible graphics cards (my laptops don't)

e We will discuss GPU cloud computing later ...

Sun Feb 3 17:57:02 2019

NVIDIA-SMI 410.78 Driver Version: 410.78

Persistence-M|
Temp Perf Pwr:Usage/Cap|

| ———— —— e ———

GeForce GTX 108... Off |

19w / 256w |

L b st S e

GeForce GTX

17w / 250w

e —
GeForce GTX 108...

| % 17w / 250w

e ——
| GeForce GTX 108...

P8 19w / 250w

o . . . . . . . . . . . . . .

o o ——  ——

Bus-Id
Memory-Usage

00000000:05:
751M1B /

00000000 :06:
11178M1B

00000000 :09:00.0 Off
11178M1B

00000000 :0A:00.0 Off
11178M1B

CUDA Version: 10.

| Volatile Uncorr. ECC
| GPU-Util Compute M.

+
I
I

+
I
|
+
|
|

+
|
|

+

17



About Installing PyTorch

If you want to install PyTorch later (after the lecture) ...

e If you use it on a laptop, you likely don't have a CUDA compatible GPU
¢ Recommend using CPU version for your laptop (no CUDA)

e Installation on GPU-cloud later ...
e Also, use this selector tool from https://pytorch.org

(conda is recommended):

PyTorch Build Stable (1.0)

Mac Windows

Preview (Nightly)

Your OS

Linux
Package Pip LibTorch Source

Run this Command: conda install pytorch toxchvision -c pytoxch

Language Python 2.7 Python 3.5 Python 3.6

Sebastian Raschka STAT 479: Deep Learning SS 2019


https://pytorch.org

Vectors

19



How do we call this again in the context of neural nets?

Wi x4+b=z2

Basic vector operations

e Addition (/subtraction)
e Inner products (e.g., dot product)
e Scalar multiplication

Vectors

where

X =

20



TensorFlow and PyTorch Tensors are not Real Tensors

In [2]: a = torch.tensor([1, 2, 31])
In [3]: b = torch.tensor([4, 5, 61])

In [4]: a * b
Out[4]: tensor([ 4, 10, 18])

In [5]: torch.tensor([1l, 2, 3]) 1
Out[5]: tensor([2, 3, 4])

While not equivalent to the mathematical definitions, very useful for computing!

(these "extensions" are now also commonly used in mathematical notation in computer science

literature as they are quite convenient)

2



Matrices

22



Computing the Output From Multiple Training Examples at Once

e The perceptron algorithm is typically considered an "online" algorithm
(i.e., it updates the weights after each training example)

e However, during prediction (e.g., test set evaluation), we could pass all data points
at once (so that we can get rid of the "for-loop")

- |1 1 1|7
[0 G0
2] [2] (2] | ® Two opportunities for parallelism:
T Ty ... T -
X — multiplying elements to compute the dot product
e computing multiple dot products
n mn n
UG Ll

23



Computing the Output From Multiple Training Examples at Once

e Two opportunities for parallelism:
1. computing the dot product in parallel

2. computing multiple dot products at once

EL L
MG
XW -+ b=1z where X = |
Y @y T
(this is why W is not a "vector" w x4 p]
but an m X 1 matrix) w ! x2l 1 p
7 — —

24



Computing the Output From Multiple Training Examples at Once

XW-+b=1z But NumPy and PyTorch
are not very picky about that:

In [1]: import

In [2]: X = torch.arange(6).view(2, 3)

(this is why W is not a "vector" In [3]: X
' Out[3]:
X
but an m X 1 matrix) tensor( [0, 1. 21.

[3, 4, 5]])
In [4]: w = torch.tensor([1, 2, 3])

In [5]: X.matmul(w)
same as reshape

Out[5]: tensor([ 8, 26])
/ (historic reasons)

In [6]: w = w.view(-1, 1)

In [7]: X.matmul(w)

Outl[7]:

tensor([[ 8],
[26]11)

29



Computing the Output From Multiple Training Examples at Once

e Two opportunities for parallelism:
1. computing the dot product in parallel

2. computing multiple dot products at once

- (1] [1] [1]7

Ty Ty ... Tm _ .
) [ 2 .
513[1 Lo c. Im W9
Xw+b=12z where X=1 | aw= .
; ; L w-m
_x[ln] x[2n] x%b]_ -
N | 7 — 1]
(this is why W is not a "vector" w x4+ b 211
but an m X 1 matrix) w ! x2 +p ~12]
7 — p—
w ' x™ b 2

Can you spot the error on this slide? - - _ -

Sebastian Raschka STAT 479: Deep Learning SS 2019

20



Computing the Output From Multiple Training Examples at Once

XwW-+b=1z7 Can you spot the error on this slide?

This should be

Xw—+1,,0 =12z

but we deep learning researchers are lazy! :)

Sebastian Raschka STAT 479: Deep Learning SS 2019 27



Broadcasting

e In PyTorch, it works just fine.
e This (general) feature is called "broadcasting’

In [4]: torch.tensor([1l, 2, 3]) 1
Out[4]: tensor([2, 3, 4])

In [5]: t = torch.tensor([[4, 5, 6], [7, 8, 911)

In [6]: t

out[6]:

tensor([[4, 5, 6],
[7, 8, 911)

In [7]: t torch.tensor([1, 2, 31])
Oout[7]:
tensor([[ 5, 7, 9],

[ 8, 10, 12]1])

28



Broadcasting

e In PyTorch, it works just fine.
e This (general) feature is called "broadcasting”"

In [4]: torch.tensor([1l, 2, 3]) 1 | :

Out[4]: tensor([2, 3, 4]) 123+ __I_J__I__' % 2| E

In [5]: t = torch.tensor([[4, 5, 6], [7, 8, 911)

In [6]: t

out[6]: 4 [ 5] 6 . | | 2| 3 S 517

tensor([[4, 5, 6], 71819 123! 8 |10
(7, 8, 911)

In [7]: t + torch.tensor([1l, 2, 31) Implicit dimensions get added,

Out[7/]: elements are implicitly duplicated

7, 91,

tensor([[ 5,
8, 10, 12]])



Connections We Have Seen Before ...

Activation
()
w+b=z @ w3 | O >
Output
: Net input

e.g., Perceptron with one training example as input during
"inference" (in DL, people now often refer to predicting
Inputs the target variable as "inference")

If we have n training examples, X € R™™ 7 e R™**!

XwW-+b=12z

30



Connections We Will Encounter Later ...




A Fully Connected Layer

note that wi,j refers to the weight connecting the
j-th input to the i-th output.

where

w11 W12
w21 W22
Wh,1 Wh,2

Layer activations for 1 training example

o (WX

b):a

a c RMx1

32



A Fully Connected Layer

Layer activations for n training examples

B* T o(WXT+b]T) = A

A € Rnxh

Machine learning textbooks usually represent
training examples over columns, and features
over rows (instead of using the "design
matrix") -- in that case, we could drop the

transpose.

33



Another Common Convention

L1
L2
where X =
Lm
wl,l ’UJLQ .o wl’h
w21 w2 2 c. w2 h
W =
_wm,l Wm,2 c. wm,h_

Layer activations for 1 training example
o([x' W]' +b) =a
a € R

In code, we don't need the transpose,

note that wi,j refers to the weight

since with NumPy and PyTorch, we can

connecting the . . . .
5 multiply the following with matrices:

x € R". acR"

i-th input to the j-th output.



Another Common Convention

E_' a1 Laver activations for n training example

O'(XW—I—b) = A

a_’aﬂ A ERnXh

In practice, we will almost always be

working with multiple training examples

E-* Ap as inputs

35



But Why is the Wx Notation Intuitive?

-1 0 _LI?1 !
0 1 L9 - L9
A
L9 A
Transformation matrix r1 = 0.25
562205
v
1+ >
A

360



But Why is the Wx Notation Intuitive?

P
Two ways to think about calculatin

Y 5 le d o
1) "Row dot column"

a bl [z B ar, + bro

¢ d| |xzo| |cxy + dro
2) "Geometrical Intuition"

_CL b_ _2171- — _CL_ N _b_

c dl lzo| — e 2 1d




But Why is the Wx Notation Intuitive?

The first column affects the first dimension, the second column the second dimension and so forth.

a b| |x a b 1
= Xz
c d| |y c d 0
Now, applying the distributivity law:
a b 1 n a b 0
— Xz
c d 0 c d|?|1
Next, the associative property for scalar multiplication:
a b |1 Ll b| |0
=T
c d| |0 Yle dl
Continuing with the matrix multiplication:
a n b
=T
C I 1d

TY

0
1

38



But Why is the Wx Notation Intuitive?

IQ @I

scales the z coordinate

IQ‘ ®‘|
<

\

a

d

X

.

moves x in y direction

Ty

b

\

moves y into x direction

/

scales the y coordinate

39



But Why is the Wx Notation Intuitive?

Stretching x-axis by factor of 3:

3 0| [z] [3x y
0 1]|ly| |y

Stretching y-axis by factor of 2: !

1 0] [z B T y

0 2| |y| |2y /

Stretching x-axis by factor of 3 and y-axis by a factor of 2:

3 0| [z] [3z
0 2] |y 21




But Why is the Wx Notation Intuitive?

Take-home exercise:

think about transformation matrices for
1) Mirroring
2) Shearing (rectangle -> parallelogram)
3) Rotation

41



Fully Connected Layer in PyTorch

import torch

X = torch.arange(50, dtype=torch.float).view(10, 5)
# .view() and .reshape() are equivalent

X

tensor([[ 0., 1.,
[ 5., 6.,
[10., 11.,
[15., 16.,
[20., 21.,
[25., 26.,
[30., 31.,
[35., 36.,
[40., 41.,
[45., 46.,

2.

7.
12.
17.
22.
27.
32.
37.
42.
47.

3.

8.
13.
18.
23.
28.
33.
38.
43.
48.

, 4.
, 9.
, 14.
, 19.
, 24.
, 29.
, 34.
, 39.
, 44,
, 49,

’

-

-

-

-

-

-

]
]
]
]
]
]
]
]
]
]

1)

fc_layer = torch.nn.Linear(in_features=5,

fc_layer.weight

Parameter containing:
0.1684,
0.0663,
0.0413,

tensor([[-0.1706,
[-0.1356,
[-0.0736,

fc_layer.bias

Parameter containing:

tensor([-0.2552,

Sebastian Raschka

0.3918,

out_features=3)

0.3509, 0.1649, ©0.1903],
-0.4357, 0.2710, 0.1179],
-0.0186, 0.4032, 0.0992]],

0.2693], requires_grad=True)

STAT 479: Deep Learning

requires_grad=True)

SS 2019

42



Fully Connected Layer in PyTorch

print('X dim:"', X.size())
print('Ww dim:', fc_layer.weight.size())
print('b dim:', fc_layer.bias.size())
# .size() 1s equivalent to .shape
= fc_layer(X)
print('A:', A)
print('A dim:', A.size())

X dim: torch.Size([10, 5])

W dim: torch.Size([3, 5])

b dim: torch.Size([3])

A: tensor([[ 1.2004, 2.3291, 2.0036],
[ 4.5367, 7.7858, 5.4519],
[ 7.8730, 13.2424, 8.9003],
[11.2093, 18.6991, 12.3486],
[14.5457, 24.1557, 15.797@],
[17.8820, 29.6123, 19.2453],
[21.2183, 35.0690, 22.6937],
[24.5546, 40.5256, 26.1420],
[27.8910, 45.9823, 29.5904],
[31.2273, 51.4389, 33.0387]1], grad_fn=<ThAddmmBackward>)

A dim: torch.Size([10, 3])

Sebastian Raschka STAT 479: Deep Learning SS 2019



Based on PyTorch, We Have Another Convention ...

_101’1 w1,2 “. W1,m
w21 w2 2 “. W2 m
where W=
_wh,l Wh,2 wh’m_
X = [561 Lo ... Lim

Layer activations for 1 training example
T _
O'(XW -+ b) = a

= Rth

@_, ap Layer activations for n training example

note that W3, j refers to the weight

connecting the O'(XWT —+ b) — a

j-th input to the i-th output. s h
acl

You can find the source code here:
https://github.com/pytorch/pytorch/blob/18edd3ab@828acaa8ldc@52dba8644c874dc62db/torch/nn/functional.py#L1368

44


https://github.com/pytorch/pytorch/blob/18edd3ab0828acaa81dc052dba8644c874dc62db/torch/nn/functional.py#L1368

Conclusion

e Always think about how the dot products are computed when
writing and implementing matrix multiplication

e Theoretical intuition and convention does not always match up
with practical convenience (coding)

e When switching between theory and code, these rules may be
useful:

AB=(B'A")'

(AB)! =B'A'

45



Our Convention (compromise betw. math convention & PyTorch)

where

(Transformation matrix should ideally be always in the front!)

wi,1
w21

| Wh,1

w1i,2
w2 2

Wh,2

W1,m

W2, m

Wh,m |

note that Wi,j refers to the
weight connecting the
J-th input to the i-th output.

Layer activations for 1 training example

O'(WX—|—b)
& o(x'W'' +b)=a

& o(xW']+b) =a

— a aERth with x € R™*1

with X & RmX1

with X € RIX™ (PyTorch)

Layer activations for n training examples

c((WX']"+b)=a,acR”" wn X cR"™™

& o([XW']+b)=a

with X E Rnxm

46



Next Lecture:
A better* learning algorithm
for neural networks

* compared to the perceptron rule

47



Ungraded Homework Exercise

Revisit our Perceptron NumPy code:

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L 03 perceptron/code/
perceptron-numpy.ipynb

1. Without running the code, can you tell if the perceptron could
predict the class labels if we feed an array of multiple training examples
at once (i.e., via its forward method)?

- If yes, why?
- If no, what change would you need to make

2. Run the code to verify your intuition.

3. What about the train method? Can we have parallelism through matrix multiplication
without affecting the perceptron learning rule?

48


https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L03_perceptron/code/perceptron-numpy.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L03_perceptron/code/perceptron-numpy.ipynb

