Lecture 04

Linear Algebra for Deep Learning

STAT 479: Deep Learning, Spring 2019

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Tensors

Vectors, Matrices, and Tensors -- Notational Conventions

Scalar

(rank-0 tensor)

$$x \in \mathbb{R}$$

e.g.,

$$x = 1$$

Vector

(rank-1 tensor)

$$\mathbf{x} \in \mathbb{R}^n$$

but in this lecture, we will assume

$$\mathbf{x} \in \mathbb{R}^{n \times 1}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Matrix

(rank-2 tensor)

$$\mathbf{X} \in \mathbb{R}^{m \times n}$$

e.g.,

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$

$$\mathbf{x}^{\top} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, \text{ where } \mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}$$

Vectors, Matrices, and Tensors -- Notational Conventions

We will often use X as a special convention to refer to the "design matrix." That is, the matrix containing the training examples and features (inputs)

and assume the structure $\mathbf{X} \in \mathbb{R}^{n \times m}$

because n is often used to refer to the number of examples in literature across many disciplines.

$$\mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$$
 $x_2^{[1]} = 2$ nd feature value of the 1st training example

E.g.,

Why the "ugly" superscript?

Even in context, \mathbf{X}_i may not be always clear:

- does it refer to the feature vector of the ith training example?
- does it refer to ith feature column across training examples?

Why the "ugly" superscript?

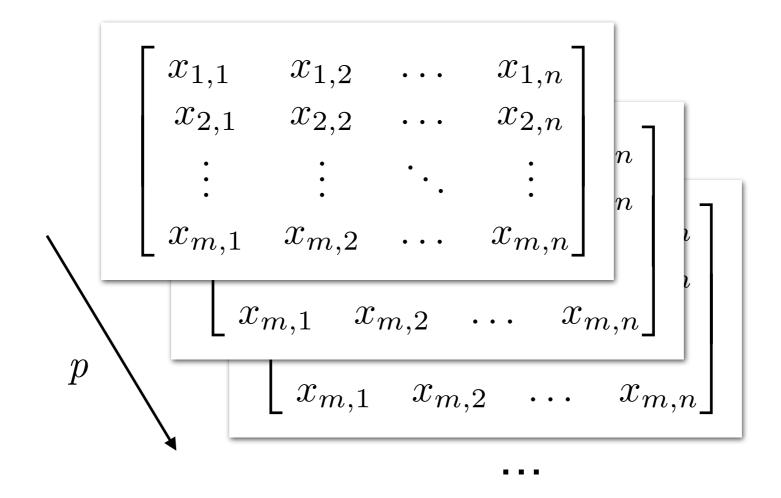
 \mathbf{X}_i and $\mathbf{X}^{[j]}$ are less ambiguous

Vectors, Matrices, and Tensors -- Notational Conventions

3D Tensor

(rank-3 tensor)

$$X \in \mathbb{R}^{m \times n \times p}$$



An Example of a 3D Tensor in DL

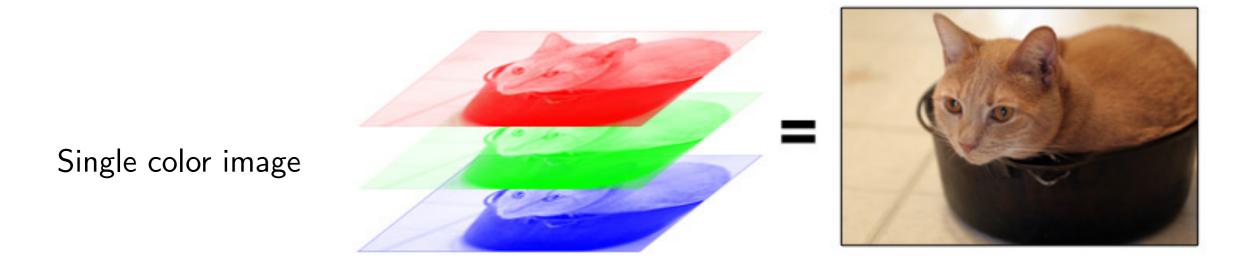
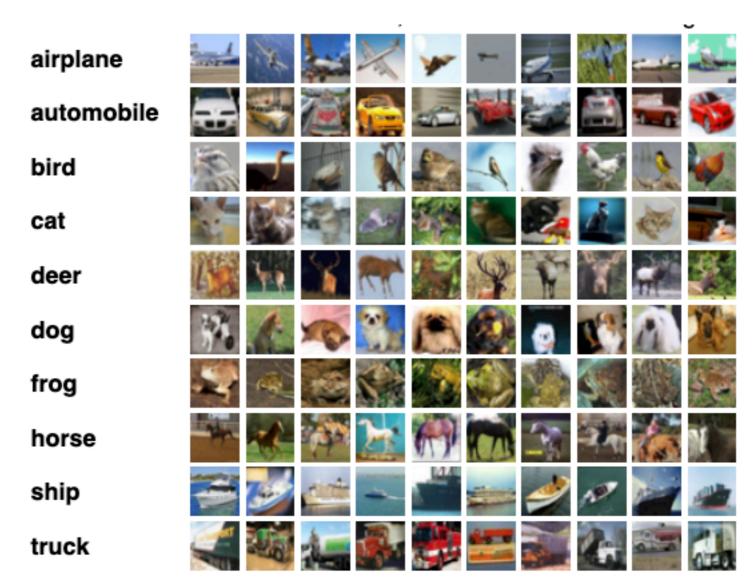


Image Source: https://code.tutsplus.com/tutorials/create-a-retro-crt-distortion-effect-using-rgb-shifting--active-3359

(3D tensor for "multidimensional-array" storage and parallel computing purpose, we still use regular vector and matrix math)

An Example of a 4D Tensor in DL

Batch of images (as neural network input, more later)



https://www.cs.toronto.edu/~kriz/cifar.html

(4D tensor for "multidimensional-array" storage and parallel computing purpose, we still use regular vector and matrix math)

Interlude: Multidimensional Arrays as Tensors

```
numpy.array / numpy.ndarray =
                     (data structure representation of a tensor)
    pytorch.tensor / pytorch.Tensor =
                     (data structure representation of a tensor)
Example:
           In [1]: import numpy as np
             ...: import torch
```

```
. . . :
   ...: a = np.array([1., 2., 3.])
   ...: b = torch.tensor([1., 2., 3.])
In [2]: print(a.dtype)
   ...: print(b.dtype)
   . . . :
   ...: print(a.shape)
   ...: print(b.shape)
float.64
torch.float32
(3,)
torch.Size([3])
Sebastian Raschka
```

10

NumPy and PyTorch Syntax is Very Similar

Example:

```
In [1]: import numpy as np
   ...: import torch
   . . . .
   ...: a = np.array([1., 2., 3.])
   ...: b = torch.tensor([1., 2., 3.])
In [2]: print(a.dot(a))
14.0
                               Note: "dot" vs "matmul"
In [3]: print(b.matmul(b))
tensor(14.)
In [4]: b.numpy()
Out[4]: array([1., 2., 3.], dtype=float32)
In [5]: torch.tensor(a)
Out [5]: tensor([1., 2., 3.], dtype=torch.float64)
```

We can convert, but pay attention to default types

Data Types to Memorize

NumPy data type	Tensor data type	
numpy.uint8	torch.ByteTensor	
numpy.int16	torch.ShortTensor	
numpy.int32	torch.IntTensor	
numpy.int	torch.LongTensor	
numpy.int64	torch.LongTensor	default int in NumPy & PyTorch
numpy.float16	torch.HalfTensor	
numpy.float32	torch.FloatTensor	default float in PyTorch
numpy.float	torch.DoubleTensor	
numpy.float64	torch.DoubleTensor	default float in NumPy

- E.g., int32 stands for 32 bit integer
- 32 bit floats are less precise than 64 floats, but for neural nets, it doesn't matter much
- For regular GPUs, we usually want 32 bit floats (vs 64 bit floats) for fast performance

PyTorch is Picky about Types

```
In [20]: c = torch.tensor([1., 2., 3.])
    \dots: d = torch.tensor([1, 2, 3])
    ...: print(c - d)
RuntimeError
                                           Traceback (most recent call last)
<ipython-input-20-b04feb3ca8b4> in <module>
      2 d = torch.tensor([1, 2, 3])
----> 4 print(c - d)
RuntimeError: expected type torch.FloatTensor but got torch.LongTensor
```

PyTorch is Picky about Types

Specify the type upon construction based on your main use case:

```
In [21]: c = torch.tensor([1., 2., 3.], dtype=torch.float)
    ...: d = torch.tensor([1, 2, 3], dtype=torch.float)
    . . . :
    ...: print(c - d)
tensor([0., 0., 0.])
```

You can also change types later/on the fly if you must

```
In [22]: c = torch.tensor([1., 2., 3.])
    \dots: d = torch.tensor([1, 2, 3])
    . . . .
    ...: print(c.float() - d.float())
    ...: print(c.double() - d.double())
    ...: print(c.int() - d.int())
    ...: print(c.long() - d.long())
tensor([0., 0., 0.])
tensor([0., 0., 0.], dtype=torch.float64)
tensor([0, 0, 0], dtype=torch.int32)
tensor([0, 0, 0])
               Sebastian Raschka STAT 479: Deep Learning SS 2019
```

So, Why Not Just Using NumPy?

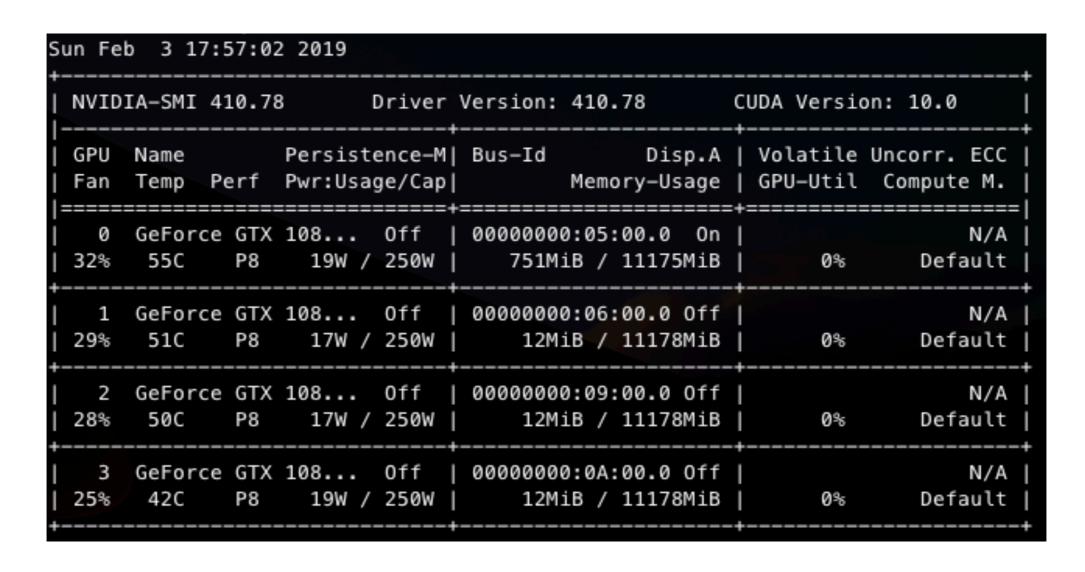
- PyTorch has GPU support:
 - A. we can load the dataset and model parameters into GPU memory
 - B. on the GPU we then have better parallelism for computing (many) matrix multiplications
- Also, PyTorch has automatic differentiation (more later)
- Moreover, PyTorch implements many DL convenience functions (more later)

Loading Data onto the GPU is Easy!

```
In [23]: print(torch.cuda.is_available())
True
In [24]: b = b.to(torch.device('cuda:0'))
    ...: print(b)
tensor([1., 2., 3.], device='cuda:0')
In [25]: b = b.to(torch.device('cpu'))
    ...: print(b)
tensor([1., 2., 3.])
```

How to Check Your CUDA Devices

- If you have CUDA installed, you should have access to nvidia-smi
- However, if you are using a laptop, you probably don't have CUDA compatible graphics cards (my laptops don't)
- We will discuss GPU cloud computing later ...



About Installing PyTorch

If you want to install PyTorch later (after the lecture) ...

- If you use it on a laptop, you likely don't have a CUDA compatible GPU
- Recommend using CPU version for your laptop (no CUDA)
- Installation on GPU-cloud later ...
- Also, use this selector tool from https://pytorch.org
 (conda is recommended):



Vectors

Vectors

How do we call this again in the context of neural nets?

$$\mathbf{w}^{ op}\mathbf{x} + b = z$$
 where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$ $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$

Basic vector operations

- Addition (/subtraction)
- Inner products (e.g., dot product)
- Scalar multiplication

TensorFlow and PyTorch Tensors are not Real Tensors

```
In [2]: a = torch.tensor([1, 2, 3])
In [3]: b = torch.tensor([4, 5, 6])
In [4]: a * b
Out[4]: tensor([ 4, 10, 18])
In [5]: torch.tensor([1, 2, 3]) + 1
Out[5]: tensor([2, 3, 4])
```

While not equivalent to the mathematical definitions, very useful for computing!

(these "extensions" are now also commonly used in mathematical notation in computer science literature as they are quite convenient)

Matrices

- The perceptron algorithm is typically considered an "online" algorithm (i.e., it updates the weights after each training example)
- However, during prediction (e.g., test set evaluation), we could pass all data points at once (so that we can get rid of the "for-loop")

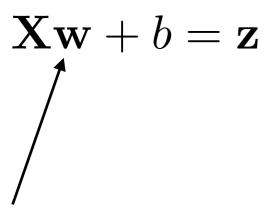
$$\mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix} \bullet \text{ Two opportunities for parallelism: multiplying elements to compute the dot product} \bullet \text{ computing multiple dot products}$$

- Two opportunities for parallelism:
 - 1. computing the dot product in parallel
 - 2. computing multiple dot products at once

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$
 where $\mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$

(this is why ${\bf W}$ is not a "vector" but an $m \times 1 \, {\rm matrix}$)

$$\mathbf{z} = \begin{bmatrix} \mathbf{w}^{\top} \mathbf{x}^{[1]} + b \\ \mathbf{w}^{\top} \mathbf{x}^{[2]} + b \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}^{[n]} + b \end{bmatrix} = \begin{bmatrix} z^{[1]} \\ z^{[2]} \\ \vdots \\ z^{[n]} \end{bmatrix}$$



(this is why ${\bf W}$ is not a "vector" but an $m \times 1$ matrix)

```
But NumPy and PyTorch
are not very picky about that:
In [1]: import torch
In [2]: X = torch.arange(6).view(2, 3)
In [3]: X
Out [3]:
tensor([[0, 1, 2],
        [3, 4, 5]])
In [4]: w = torch.tensor([1, 2, 3])
In [5]: X.matmul(w)
                                    same as reshape
Out[5]: tensor([ 8, 26])
                                     (historic reasons)
In [6]: w = w.view(-1, 1)
In [7]: X.matmul(w)
Out [7]:
tensor([[ 8],
         [26]])
```

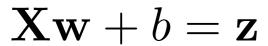
- Two opportunities for parallelism:
 - 1. computing the dot product in parallel
 - 2. computing multiple dot products at once

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$
 where $\mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$

(this is why ${\bf W}$ is not a "vector" but an $m \times 1 \, {\rm matrix}$)

$$\mathbf{z} = \begin{bmatrix} \mathbf{w}^{\top} \mathbf{x}^{[1]} + b \\ \mathbf{w}^{\top} \mathbf{x}^{[2]} + b \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}^{[n]} + b \end{bmatrix} = \begin{bmatrix} z^{[1]} \\ z^{[2]} \\ \vdots \\ z^{[n]} \end{bmatrix}$$

Can you spot the error on this slide?



Can you spot the error on this slide?

This should be

$$\mathbf{X}\mathbf{w} + \mathbf{1}_m b = \mathbf{z}$$

but we deep learning researchers are lazy! :)

Broadcasting

- In PyTorch, it works just fine.
- This (general) feature is called "broadcasting"

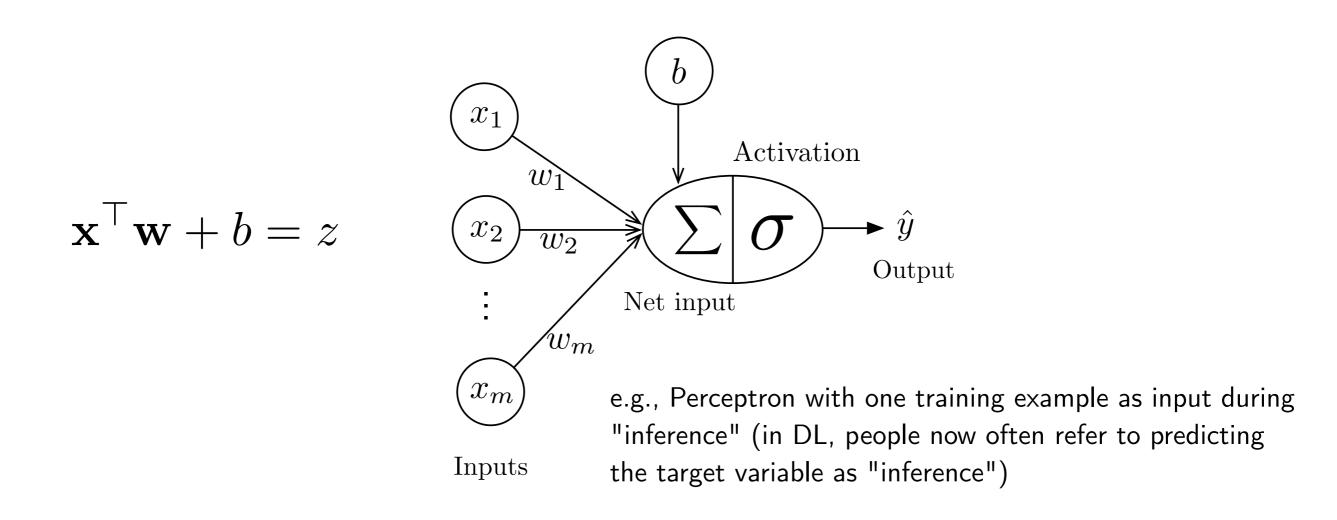
```
In [4]: torch.tensor([1, 2, 3]) + 1
Out[4]: tensor([2, 3, 4])
In [5]: t = torch.tensor([[4, 5, 6], [7, 8, 9]])
In [6]: t
Out[6]:
tensor([[4, 5, 6],
        [7, 8, 9]])
In [7]: t + torch.tensor([1, 2, 3])
Out[7]:
tensor([[ 5, 7, 9],
        [ 8, 10, 12]])
```

Broadcasting

- In PyTorch, it works just fine.
- This (general) feature is called "broadcasting"

Implicit dimensions get added, elements are implicitly duplicated

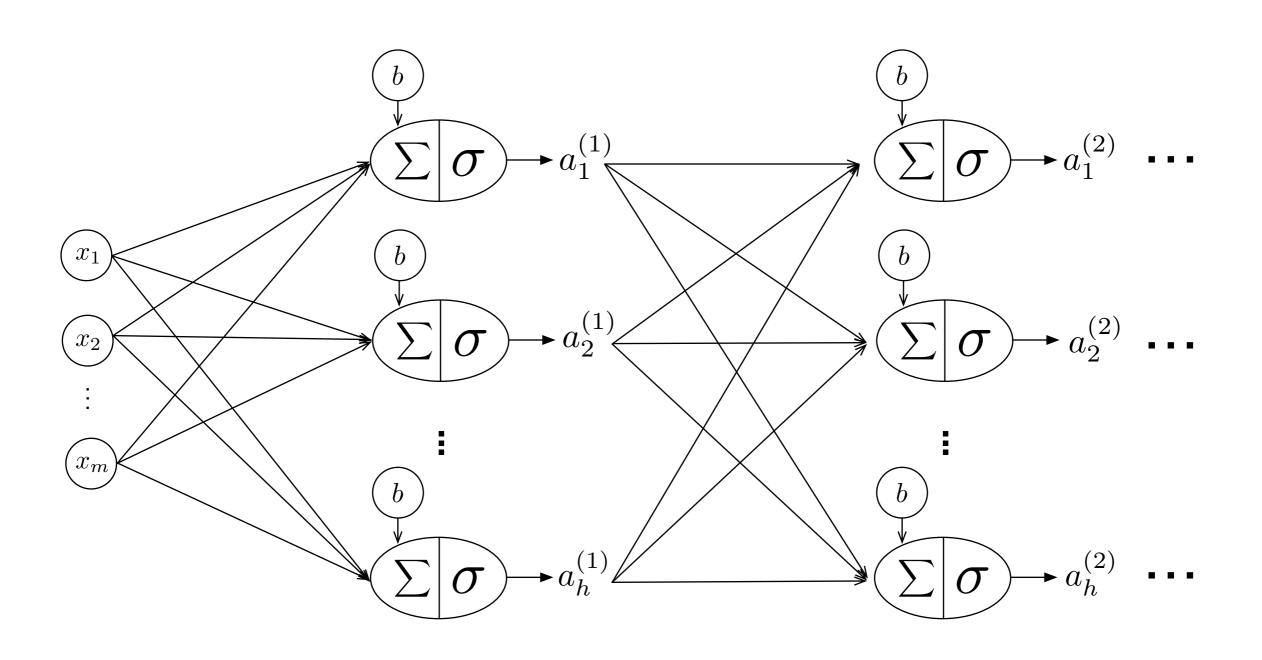
Connections We Have Seen Before ...



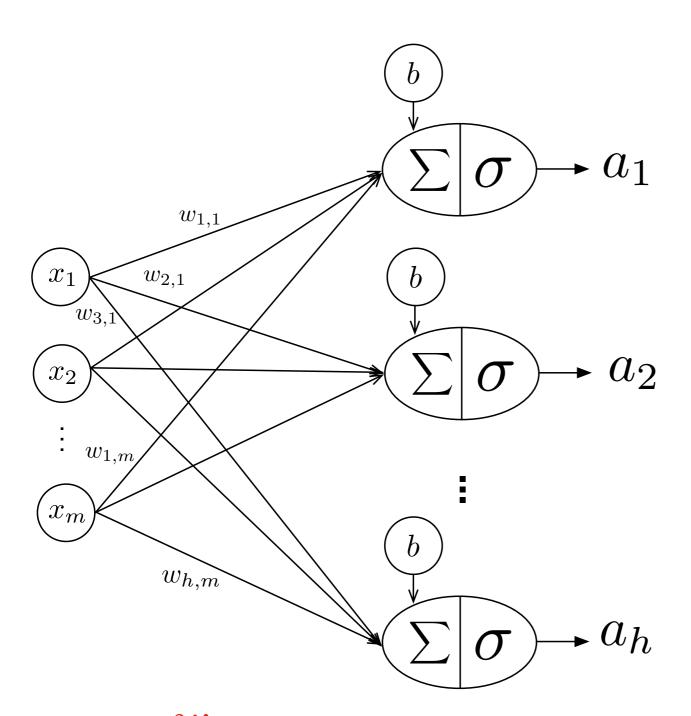
If we have n training examples, $\mathbf{X} \in \mathbb{R}^{n \times m}$, $\mathbf{z} \in \mathbb{R}^{n \times 1}$

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$

Connections We Will Encounter Later ...



A Fully Connected Layer



where

$$\mathbf{x} = egin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,m} \\ w_{2,1} & w_{2,2} & \dots & w_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{h,1} & w_{h,2} & \dots & w_{h,m} \end{bmatrix}$$

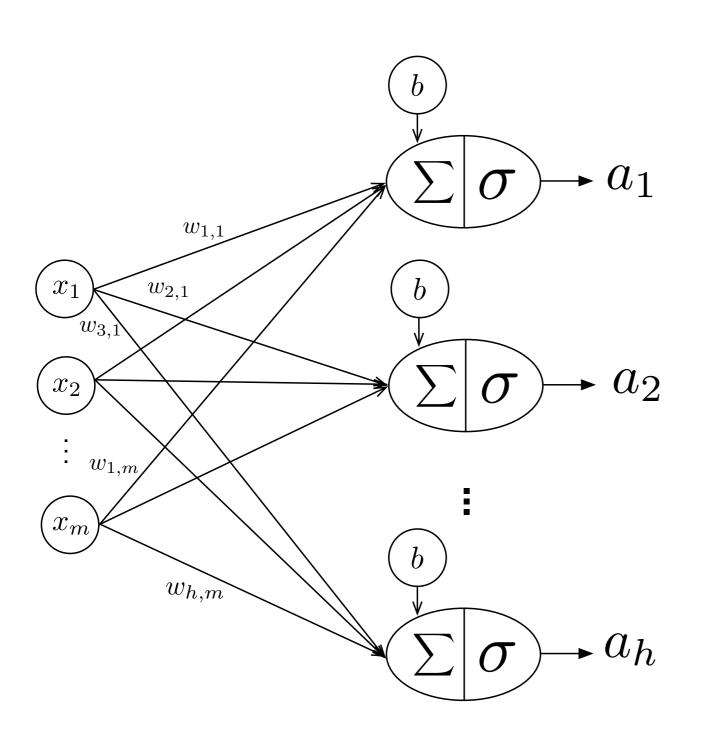
Layer activations for 1 training example

$$\sigma(\mathbf{W}\mathbf{x} + \mathbf{b}) = \mathbf{a}$$

 $\mathbf{a} \in \mathbb{R}^{h \times 1}$

note that $w_{i,j}$ refers to the weight connecting the *j*-th input to the *i*-th output.

A Fully Connected Layer



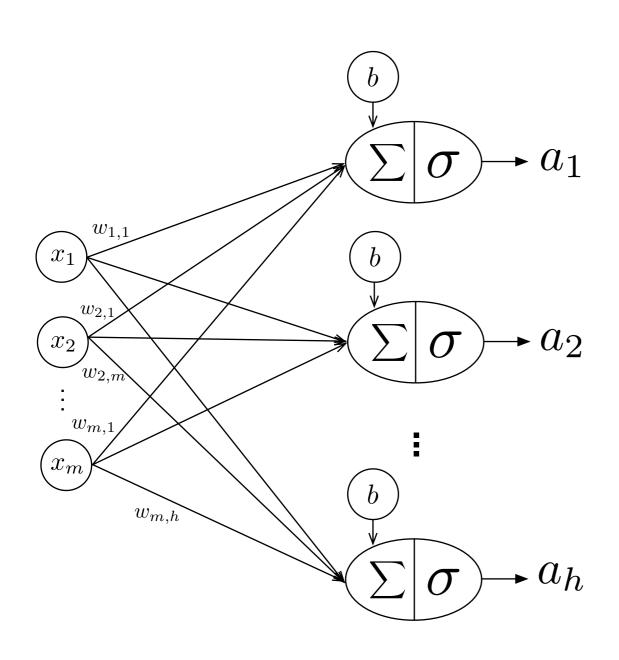
Layer activations for n training examples

$$\sigma([\mathbf{W}\mathbf{X}^{\top} + \mathbf{b}]^{\top}) = \mathbf{A}$$

$$\mathbf{A} \in \mathbb{R}^{n \times h}$$

Machine learning textbooks usually represent training examples over columns, and features over rows (instead of using the "design matrix") — in that case, we could drop the transpose.

Another Common Convention



note that $w_{i,j}$ refers to the weight connecting the i-th input to the j-th output.

where
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

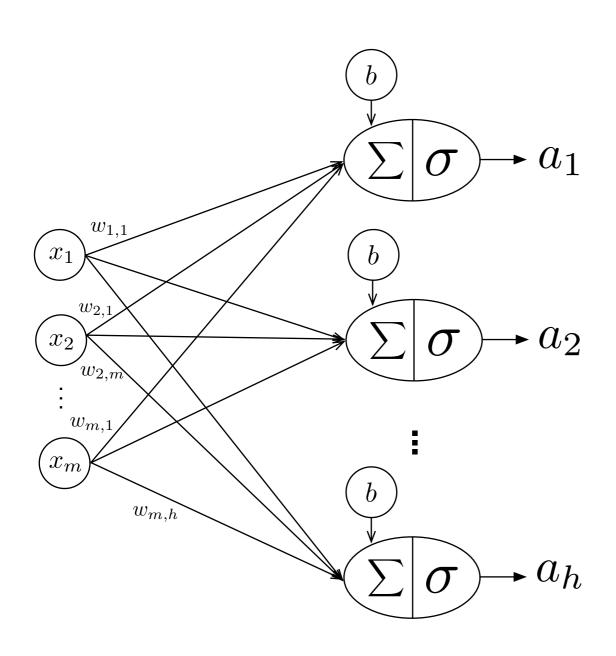
$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,h} \\ w_{2,1} & w_{2,2} & \dots & w_{2,h} \\ \vdots & \vdots & \ddots & \vdots \\ w_{m,1} & w_{m,2} & \dots & w_{m,h} \end{bmatrix}$$

Layer activations for 1 training example

$$\sigma([\mathbf{x}^{\top}\mathbf{W}]^{\top} + \mathbf{b}) = \mathbf{a}$$
$$\mathbf{a} \in \mathbb{R}^{h \times 1}$$

In code, we don't need the transpose, since with NumPy and PyTorch, we can multiply the following with matrices:

Another Common Convention



Layer activations for n training example

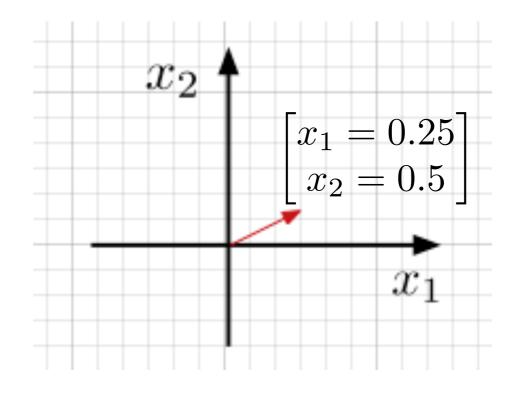
$$\sigma(\mathbf{XW} + \mathbf{b}) = \mathbf{A}$$
$$\mathbf{A} \in \mathbb{R}^{n \times h}$$

In practice, we will almost always be working with multiple training examples as inputs

But Why is the Wx Notation Intuitive?

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Transformation matrix



Two ways to think about calculating $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$

1) "Row dot column"

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix}$$

2) "Geometrical Intuition"

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a \\ c \end{bmatrix} + x_2 \begin{bmatrix} b \\ d \end{bmatrix}$$

The first column affects the first dimension, the second column the second dimension and so forth.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

Now, applying the distributivity law:

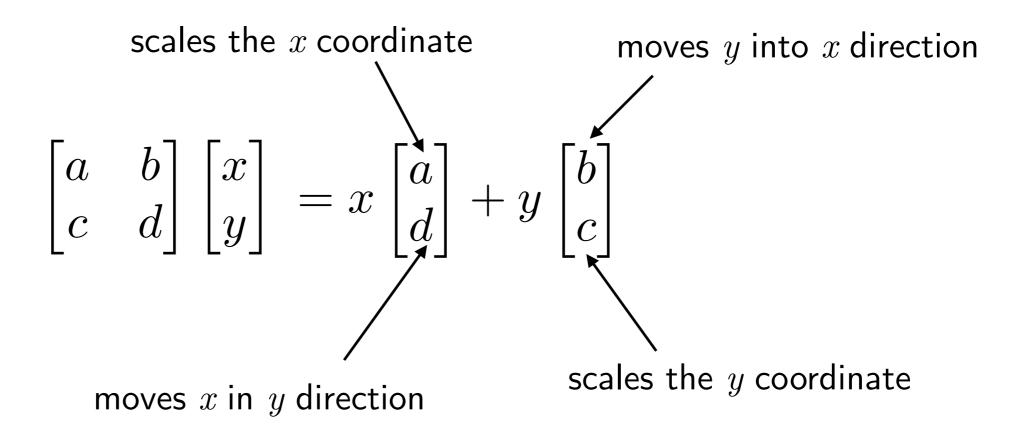
$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} y \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Next, the associative property for scalar multiplication:

$$= x \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

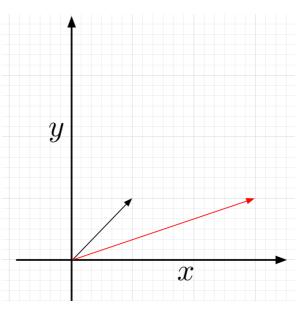
Continuing with the matrix multiplication:

$$= x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix}$$
Sebastian Raschka



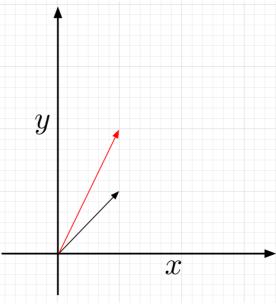
Stretching x-axis by factor of 3:

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ y \end{bmatrix}$$



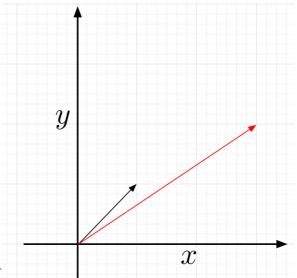
Stretching y-axis by factor of 2:

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2y \end{bmatrix}$$



Stretching x-axis by factor of 3 and y-axis by a factor of 2:

$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ 2y \end{bmatrix}$$



Take-home exercise:

think about transformation matrices for

- 1) Mirroring
- 2) Shearing (rectangle -> parallelogram)
- 3) Rotation

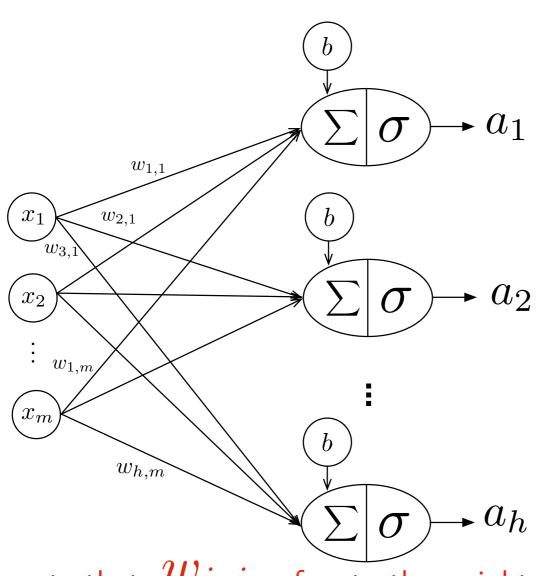
Fully Connected Layer in PyTorch

```
[1]: import torch
[2]: X = torch.arange(50, dtype=torch.float).view(10, 5)
     # .view() and .reshape() are equivalent
     Χ
[2]: tensor([[ 0., 1., 2., 3., 4.],
             [5., 6., 7., 8., 9.],
             [10., 11., 12., 13., 14.],
             [15., 16., 17., 18., 19.],
             [20., 21., 22., 23., 24.],
             [25., 26., 27., 28., 29.],
             [30., 31., 32., 33., 34.],
             [35., 36., 37., 38., 39.],
             [40., 41., 42., 43., 44.],
             [45., 46., 47., 48., 49.]])
[3]: fc_layer = torch.nn.Linear(in_features=5,
                                out_features=3)
[4]: fc_layer.weight
[4]: Parameter containing:
     tensor([[-0.1706, 0.1684, 0.3509, 0.1649, 0.1903],
             [-0.1356, 0.0663, -0.4357, 0.2710, 0.1179],
             [-0.0736, 0.0413, -0.0186, 0.4032, 0.0992]], requires_grad=True)
[5]: fc_layer.bias
[5]: Parameter containing:
     tensor([-0.2552, 0.3918, 0.2693], requires_grad=True)
```

Fully Connected Layer in PyTorch

```
[6]: print('X dim:', X.size())
     print('W dim:', fc_layer.weight.size())
     print('b dim:', fc_layer.bias.size())
     # .size() is equivalent to .shape
     A = fc_{ayer}(X)
     print('A:', A)
     print('A dim:', A.size())
     X dim: torch.Size([10, 5])
     W dim: torch.Size([3, 5])
     b dim: torch.Size([3])
     A: tensor([[ 1.2004, 2.3291, 2.0036],
             [ 4.5367, 7.7858, 5.4519],
             [ 7.8730, 13.2424, 8.9003],
             [11.2093, 18.6991, 12.3486],
             [14.5457, 24.1557, 15.7970],
             [17.8820, 29.6123, 19.2453],
              [21.2183, 35.0690, 22.6937],
             [24.5546, 40.5256, 26.1420],
             [27.8910, 45.9823, 29.5904],
             [31.2273, 51.4389, 33.0387]], grad_fn=<ThAddmmBackward>)
     A dim: torch.Size([10, 3])
```

Based on PyTorch, We Have Another Convention ...



note that $w_{i,j}$ refers to the weight connecting the j-th input to the i-th output.

where
$$\mathbf{W}=egin{bmatrix} w_{1,1} & w_{1,2} & \ldots & w_{1,m} \ w_{2,1} & w_{2,2} & \ldots & w_{2,m} \ dots & dots & \ddots & dots \ w_{h,1} & w_{h,2} & \ldots & w_{h,m} \end{bmatrix}$$
 $\mathbf{x}=egin{bmatrix} x_1 & x_2 & \ldots & x_m \end{bmatrix}$

Layer activations for 1 training example

$$\sigma(\mathbf{x}\mathbf{W}^{\top} + \mathbf{b}) = \mathbf{a}$$

 $\mathbf{a} \in \mathbb{R}^{1 \times h}$

Layer activations for n training example

$$\sigma(\mathbf{X}\mathbf{W}^{\top} + \mathbf{b}) = \mathbf{a}$$
$$\mathbf{a} \in \mathbb{R}^{n \times h}$$

You can find the source code here:

Conclusion

- Always think about how the dot products are computed when writing and implementing matrix multiplication
- Theoretical intuition and convention does not always match up with practical convenience (coding)
- When switching between theory and code, these rules may be useful:

$$\mathbf{A}\mathbf{B} = (\mathbf{B}^{\top}\mathbf{A}^{\top})^{\top}$$

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$

Our Convention (compromise betw. math convention & PyTorch)

(Transformation matrix should ideally be always in the front!)

where
$$\mathbf{W} = egin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,m} \\ w_{2,1} & w_{2,2} & \dots & w_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{h,1} & w_{h,2} & \dots & w_{h,m} \end{bmatrix}$$
 note that $w_{i,j}$ refers to the weight connecting the j -th input to the i -th output.

note that $w_{i,j}$ refers to the

<u>Layer activations for 1 training example</u>

$$\sigma \big(\mathbf{W} \mathbf{x} + \mathbf{b} \big) = \mathbf{a} \text{ , } \mathbf{a} \in \mathbb{R}^{h \times 1} \text{ with } \mathbf{x} \in \mathbb{R}^{m \times 1}$$

$$\Leftrightarrow \sigma \big([\mathbf{x}^\top \mathbf{W}^\top]^\top + \mathbf{b} \big) = \mathbf{a} \text{ with } \mathbf{x} \in \mathbb{R}^{m \times 1}$$

$$\Leftrightarrow \sigma \big([\mathbf{x} \mathbf{W}^\top] + \mathbf{b} \big) = \mathbf{a} \text{ with } \mathbf{x} \in \mathbb{R}^{1 \times m} \text{ (PyTorch)}$$

Layer activations for n training examples

$$\sigmaig([\mathbf{W}\mathbf{X}^{ op}]^{ op} + \mathbf{b}ig) = \mathbf{a}$$
, $\mathbf{a} \in \mathbb{R}^{n \times h}$ with $\mathbf{X} \in \mathbb{R}^{n \times m}$
 $\Leftrightarrow \sigma([\mathbf{X}\mathbf{W}^{ op}] + \mathbf{b}) = \mathbf{a}$ with $\mathbf{X} \in \mathbb{R}^{n \times m}$

Next Lecture: A better* learning algorithm for neural networks

* compared to the perceptron rule

Ungraded Homework Exercise

Revisit our Perceptron NumPy code:

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L03_perceptron/code/ perceptron-numpy.ipynb

- Without running the code, can you tell if the perceptron could predict the class labels if we feed an array of multiple training examples at once (i.e., via its forward method)?
 - If yes, why?
 - If no, what change would you need to make
- 2. Run the code to verify your intuition.
- What about the train method? Can we have parallelism through matrix multiplication without affecting the perceptron learning rule?