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Sequential data is not i.i.d.
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Stock market predictions
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Fig 8. Displays the actual data and the predicted data from the four models for each stock index in
Year 1 from 2010.10.01 to 2011.09.30.

https://doi.org/10.1371/journal.pone.0180944.9008

Bao, Wei, Jun Yue, and Yulei Rao. "A deep learning framework for financial time series using
stacked autoencoders and long-short term memory." PloS one 12, no. 7 (2017): e0180944.
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Different Types of Sequence Modeling Tasks
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Figure based on:

The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)



Different Types of Sequence Modeling Tasks

?"?"Cﬁ) Many-to-one: The input data is a
seqguence, but the output is a

[ J{ J{ ] fixed-size vector, not a sequence.

EX.: sentiment analysis, the input is
[ J ( J ) some text, and the output is a

<;>_)<:>_)<i> class label.
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Figure based on:

The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
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Different Types of Sequence Modeling Tasks

One-to-many: Input data is in a [ ) ( ) ( )

standard format (not a sequence),
the output is a sequence.

EX.: Image captioning, where the [ )

! : . . one-to-many
input is an image, the output is a

text description of that image
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Figure based on:

The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
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Different Types of Sequence Modeling Tasks

Many-to-many: Both inputs and outputs are sequences.
Can be direct or delayed.

EX.: Video-captioning, I.e., describing a sequence of images
via text (direct).
Translating one language into another (delayed)

]
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Figure based on:

The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
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The Classic Text Classification Approach
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A Classic Approach for Text Classification:
Bag of Words Model

1) Suppose you want to design a classifier and you have a
training dataset consisting of 3 examples (sentences)

x!Y = ”The sun is shining”
x!2l = ?The weather is sweet”
%3] = ?The sun is shining,

the weather is sweet, and one and one is two”
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A Classic Approach for Text Classification:
Bag of Words Model

2) Based on ALL your data, you would construct a vocabulary

of all unique words

vocabulary = {
'and': O,
is': 1

| .
x = ”The sun is shining” one': 2,

= ”"The weather is sweet” »
x3l = " The sun is shining,
the weather is sweet, and one and one is two” lsyweet!: 5,
'the': 6,
'two': 7,

'shining': 3,

'sun': 4,

'weather': 8,
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A Classic Approach for Text Classification:

Bag of Words Model

3) Use the vocabulary to transform the dataset into

bag-of-words vectors

(vector size is determined by the vocabulary size)

' = " The sun is shining”

x|
x[2 = ?The weather is sweet”

x!®l = ”The sun is shining,
the weather is sweet, and one anc

vocabulary = {
'and": 0,
is': 1
'one': 2,
'shining': 3,

sweet': b,
'the': 6,
'two': 7,

S
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'weather': 8,

}

—_ O O

13



A Classic Approach for Text Classification:
Bag of Words Model

4) Use the bag-of-words representation to fit a predictive model
(logistic regression, multilayer-perceptron, etc.)

0 train
q Classifier
1

DO = =
—_— O O
p—t
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A Classic Approach for Text Classification:
Bag of Words Model

01 0 1 10 1 0 0 -
Rows are training examples
X=/0 1 0 0 0 1 1 0 1
2 32 1 1121 1

Columns are features

Features can be

e word counts / term frequencies (how often a word appears in the sentence, like above)

@ binary 0/1 (whether a word occurs or not)

® term frequency-inverse document frequencies (normalized word counts)
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A Classic Approach for Text Classification:
Bag of Words Model

Optional Preprocessing: Stop Word Removal

1 — ”T)}{e sun )ﬁ/ shining”

x2l = ”% weather 15 sweet”

x13) = ”'1;17@ Sun }/S/ shining,

y?/e weather )8/ sweet, apd one awd one ig two”
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A Classic Approach for Text Classification:
Bag of Words Model

Optional Preprocessing:
n-gram tokenization with n > 1

1 token = 1 word:

xH = "The |sunis Shiningf’

1 token = 2 words:

xH = " The|sunl|is shining”




A Classic Approach for Text Classification:
Bag of Words Model

For a self-contained example of this "classic"

approach, see

https://github.com /rasbt /python-machine-learning-book-2nd-edition /blob/
master/code/ch08/ch08.ipynb
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A Classic Approach for Text Classification:
Bag of Words Model

Big Downside: We lose the spatial relationship between words!

vocabulary = {

'and': 0,
is': 1
'one': 2,
x1 = ”The sun is shining” 'shining': 3, _O 1 O 1 1 O 1 O O_
[2] _» . ” | I.
x[ | The weather is sweet o X — |0 1 O O 0 1 1 0 1
%3 = " The sun is shining, ey
the weather is sweet, and one anc 'the': 6, _2 3 2 1 1 ]‘ 2 1 1_
'two': 7,
'weather': 8,

}
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Recurrent Neural Networks
(to be continued ... )
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